XWe have detected your location as outside the U.S/Canada, if you think this is wrong, you can choose your location.

Macmillan Higher Education

Computational Methods for Physicists

Compendium for Students

Author(s):
Publisher:

Springer

Pages: 716
Further Actions:

Recommend to library

AVAILABLE FORMATS

Hardcover - 9783642324772

17 December 2012

$49.99

In stock

Paperback - 9783642438301

29 January 2015

$89.99

In stock

Ebook - 9783642324789

17 December 2012

$89.95

In stock

This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays  significant attention to error estimates,...

Show More

This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays  significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. 


Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.

Show Less

Explains the core numerical methods and techniques a physicist should know or be aware of

Shows how to control errors, stability, and convergence of computations

Supports learning and teaching with many comprehensive physics- and engineering-motivated examples, problems and solutions at the ends of chapters

Contains numerous appendices with additional topics and hints on how to increase programming efficiency

Helps to optimize program execution speeds

Gives a wide perspective on the subject and contains a great deal of material for computing in physics

Basics of numerical analysis
Solution of nonlinear equations
Matrix methods
Transformations of functions and signals
Statistical description and modeling of data
Modeling and analysis of time series
Initial-value problems for ordinary differential equations
Boundary-value problems for ordinary differential equations
Difference methods for one-dimensional partial differential equations
Difference methods for partial differential equations in more than one dim
Spectral methods for partial differential equations.
From the reviews:
“This is a well designed textbook that offers a generous compendium of numerical analysis, at a medium level of training in mathematics. The exposition style is attractive, and theoretical aspects are illustrated by relevant examples. … The book is recommended to students and researchers whose interests go beyond ‘successful recipes’, towards consistent insights into the mathematical support. Educators may also find interesting applications and case studies for lectures or laboratory sessions.” (Octavian Pastravanu, zbMATH, Vol. 1284, 2014)
Add a review

Simon Sirca was born on February 27, 1969, in Ljubljana, Slovenia. He studied physics at the Faculty of Mathematics and Physics, University of Ljubljana, and acquired his first research experience as a young researcher at the Jozef Stefan Institute in Ljubljana and the Institute for Nuclear Physics at the University of Mainz, Germany, concluding his PhD work with the thesis Axial form-factor of the nucleon from coincidence pion electroproduction at low Q2. He was a postdoctoral research associate at the Massachusetts Institute of Technology and the Thomas Je_erson National Accelerator Facility (Jefferson Lab) in the USA. His main research is in the field of hadronic structure and dynamics as explored by...

Show More

Simon Sirca was born on February 27, 1969, in Ljubljana, Slovenia. He studied physics at the Faculty of Mathematics and Physics, University of Ljubljana, and acquired his first research experience as a young researcher at the Jozef Stefan Institute in Ljubljana and the Institute for Nuclear Physics at the University of Mainz, Germany, concluding his PhD work with the thesis Axial form-factor of the nucleon from coincidence pion electroproduction at low Q2. He was a postdoctoral research associate at the Massachusetts Institute of Technology and the Thomas Je_erson National Accelerator Facility (Jefferson Lab) in the USA. His main research is in the field of hadronic structure and dynamics as explored by scattering of electrons on light nuclei, exploiting state-of-the-art polarized beams, polarized targets, and techniques of recoil polarimetry. He is also involved in theoretical work on quark models of hadrons, with the focus on electroweak processes like pion electroproduction in the nucleon resonance region. He is the head of the research group Structure of Hadronic Systems that has been active in the OOPS and BLAST Collaborations at MIT, Hall A Collaboration at Je_erson Lab, and the A1 Collaboration at Mainz. He is an Associate Professor at the Faculty of Mathematics and Physics, University of Ljubljana, where he has been teaching numerous courses in Mathematical Physics, Modern Physics I and II, and Mathematical Physics Practicum (Computational Physics).

Martin Horvat was born on April 25, 1977, in Maribor, Slovenia. He completed his physics studies at the Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, with the PhD thesis Uni-directional transport in billiard chains, and continued as a postdoctoral research associate at the Department of Mathematics, University of Bologna, Italy. His research work is devoted to classical and quantum non-linear dynamics, to transport properties in extended systems, to the quantum-classical correspondence, to theoretical and applied aspects of quantum mechanics on the classical phase space, as well as to statistical mechanics and its origin in dynamics. As a teaching assistant at the Faculty of Mathematics and Physics he has led the Physical Laboratory Course II and has taught the courses in Basic Applied Mathematics, Physics I, and Physics II.

Show Less

Best Sellers