XWe have detected your location as outside the U.S/Canada, if you think this is wrong, you can choose your location.

Macmillan Higher Education Celebrating 20 years of Macmillan Study Skills

Cart

Continue Shopping
All prices are shown excluding Tax
The submitted promocode is invalid
* Applied promocode: ×

Important information on your ebook order

Problems in Classical Electromagnetism

157 Exercises with Solutions

Author(s):
Publisher:

Springer

Pages: 454
Further Actions:

Recommend to library

AVAILABLE FORMATS

Hardcover - 9783319631325

19 December 2017

$89.99

Free Shipping

In stock

Ebook - 9783319631332

10 December 2017

$69.99

In stock

All prices are shown excluding Tax

This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in...

Show More

This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engineering, and a reference for students wishing to work in optics, material science, electronics, plasma physics.

Show Less

Presents a large set of new problems in electromagnetism, inspired by real phenomena and applications

Provides full and detailed solutions including physical insight and discussions

Includes advanced topics but without undue mathematical complexity

Explicitly links problems to real world phenomena and applications

1 Basics of Electrostatics
2 Electrostatics of Conductors
3 Electrostatics of Dielectric Media
4 Electric Currents
 5 Magnetostatics
 6 Magnetic Induction
7 Electromagnetic Oscillators and Wave Propagation
8 Maxwell Equations and Conservation Laws
9 Relativistic Transformations of the Fields
10 Radiation Emission and Scattering
11 Electromagnetic Waves in Matter
12 Transmission Lines, Waveguides
Resonant Cavities
13 Additional Problems.
Add a review

Andrea Macchi is a research scientist at CNR/INO, Pisa, Italy, and lecturer of classical electromagnetism and of plasma physics at the Physics Department of the University of Pisa. His research interests include superintense laser-matter interactions, laser-driven acceleration of particles, high field plasmonics, nonlinear plasma dynamics. He has published about 80 papers on peer reviewed journals and the textbook "A Superintense Laser-Plasma Interaction Primer" (Springer, 2013).

Giovanni Moruzzi is a retired associated professor from the Physics Department of the University of Pisa, where he is still teaching classical electromagnetism. His research interests cover atomic and molecular spectroscopy, in...

Show More

Andrea Macchi is a research scientist at CNR/INO, Pisa, Italy, and lecturer of classical electromagnetism and of plasma physics at the Physics Department of the University of Pisa. His research interests include superintense laser-matter interactions, laser-driven acceleration of particles, high field plasmonics, nonlinear plasma dynamics. He has published about 80 papers on peer reviewed journals and the textbook "A Superintense Laser-Plasma Interaction Primer" (Springer, 2013).

Giovanni Moruzzi is a retired associated professor from the Physics Department of the University of Pisa, where he is still teaching classical electromagnetism. His research interests cover atomic and molecular spectroscopy, in particular the assignment of dense molecular spectra involving internal torsional rotation. He has published more than 70 papers on peer-reviewed journals and has been coeditor and coauthor of two scientific books.

Francesco Pegoraro is a full professor at the Physics Department of the University of Pisa where he teaches classical electromagnetism and plasma physics and a corresponding member of the "Accademia dei Lincei'' in Rome. His research interests cover different areas of theoretical plasma physics ranging from magnetically confined plasmas, space and astrophysical plasmas to laser produced relativistic plasmas. He has published some 300 research papers on peer reviewed journals.

Show Less

New Publications 

Best Sellers