XWe have detected your location as outside the U.S/Canada, if you think this is wrong, you can choose your location.

Macmillan Higher Education Celebrating 20 years of Macmillan Study Skills

Cart

Continue Shopping
All prices are shown excluding Tax
The submitted promocode is invalid
Discount code already used. It can only be used once.
* Applied promocode: ×

Important information on your ebook order

Core Concepts in Data Analysis: Summarization, Correlation and Visualization

Author(s):
Publisher:

Springer

Pages: 390
Further Actions:

Recommend to library

AVAILABLE FORMATS

Ebook - 9780857292872

05 April 2011

$29.99

In stock

All prices are shown excluding Tax

Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including...

Show More

Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule).

Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information retrieval.

Innovations following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data.  

 The mathematical detail is encapsulated in the so-called “formulation” parts, whereas most material is delivered through “presentation” parts that explain the methods by applying them to small real-world data sets; concise “computation” parts inform of the algorithmic and coding issues.

 Four layers of active learning and self-study exercises are provided: worked examples, case studies, projects and questions.     

 

 

Show Less

Provides an in-depth understanding of a few basic techniques in data analysis rather than covering the broad spectrum of approaches developed to date. 

Explores methodical innovations of summarization and correlation techniques in a cognitive way.

Includes worked examples, case studies, projects and questions, ideal for class and self-study.

Introduction.-1D Analysis: Summarization and Visualisation of a Single Feature.-2D Analysis: Correlation and Visualition of Two Features.-Learning Multivariate Correlations in Data.-Principal Component Analysis and SVD.-K-Means and Related Clustering Methods.-Hierarchial Clustering.-Approximate and Spectral Clustering for Network and Affinity Data.

From the reviews:
“Oriented toward undergraduate students in the computer science field, this work offers a unique approach to data analysis by focusing primarily on summarization, correlation, and visualization techniques instead of more broad-based approaches. Summarization is the more prevalent topic in this book, with detailed coverage of clustering and principal component analysis--two important areas of summarization often treated as heuristics. … Summing Up: Highly recommended. Upper-division undergraduates and faculty.” (D. J. Gougeon, Choice, Vol. 49 (2), October, 2011)
“This textbook follows an unconventional way to present the main aspects regarding data analysis. … the reader is led in a friendly way through different data analysis areas … . this book represents an exciting text, covering the main topics of the data analysis area. It can be successfully used as a textbook for BS and MS students in computer science, on the one hand, and for researchers in data mining and related fields, on the other hand.” (Florin Gorunescu, Zentralblatt MATH, Vol. 1219, 2011)
“Core concepts in data analysis is clean and devoid of any fuzziness. The author presents his theses with a refreshing clarity seldom seen in a text of this sophistication. The entire text is rich in solved examples, case studies, projects, and introspective questions. … To single out just one of the text’s many successes: I doubt readers will ever encounter again such a detailed and excellent treatment of correlation concepts. … statisticians will also find it refreshing and engaging.” (James Van Speybroeck, ACM Computing Reviews, June, 2011)
Add a review

New Publications 

Best Sellers