Contents

List of Figures xi
List of Tables xii
Preface xiii
Foreword xv

PART 1 Microbiology

1 Microorganisms and disease

- Introduction to medical microbiology and microorganisms causing disease
 - **Bacteria**
 - Pathogenic activity
 - Infection and colonization
 - Describing bacteria
 - Establishing infection
 - Invasion: portals of entry
 - Virulence
 - Bacterial growth requirements
 - Bacterial reproduction and genetics
 - Escape and dissemination
 - **Viruses**
 - Life cycle
 - Viruses and malignancy
 - **Fungi**
 - **Protozoa**
 - **Rickettsiae and chlamydiae**
 - **Mycoplasmas**
 - **Helminths**
 - Threadworms
 - References
 - Further reading and information sources

2 Response of the body to infection

- Introduction to the immune response, immunity and immunology
 - Types of immunity
 - Innate immunity: preventing invasion
 - Innate immunity: limiting spread
 - Adaptive immunity
 - Individual variation in the immune response and predisposition to infection
 - Immunity throughout the lifespan
 - Immunity and community health
 - Standard immunization against infectious diseases
 - Health promotion

Policies and procedures to prevent infection
 Standard and high-risk situations 102
Decontamination
 Cleaning the environment 104
 Disinfection 106
 Hand hygiene 111
Sterilization 114
Disposing of waste, dealing with laundry and other contaminated items
 Waste disposal policies 116
 Laundry policies 118
 Crockery and cutlery 118
Personal protective equipment
 Aprons, gowns and tabards 119
 Surgical masks 119
 Hair covering 120
 Overshoes 120
Theatre precautions
 Reducing the risks of infection in theatre 120
Isolation policies
 Disease-specific isolation precautions 122
Categories of isolation
 Protective isolation 124
References 125
Further reading and information sources 129

6 Preventing infection in healthcare settings 131
 Introduction 131
 The significance of healthcare-associated infection 131
 The extent of healthcare-associated infection 132
 Monitoring healthcare-associated infection 133
 Pathogens causing healthcare-associated infection 135
 Staphylococcal infection 135
 Clostridiuim difficile 138
 Streptococcal infection 138
 Enterococci 140
 Gram-negative infections 142
 Infection prevention and control services 142
 The role of infection prevention and control services in hospital 142
 Infection control policies, guidelines and standards 144
References 144
Further reading and information sources 148

PART III Applying Knowledge to Practice 149

7 Urinary infection and catheterization 151
 Introduction: urinary infection and catheterization 151
 The use of urinary catheters 151
 Urinary tract infection (UTI) and urinary catheterization 152
 The closed urinary drainage system 155
 Portals of entry 155
Recommendations for clinical practice: reducing the problems of catheterization 156
Patient/resident education 157
Choice of catheter material 157
Catheter length 158
Catheter gauge 158
Balloon size 158
Catheter insertion 158
Meatal hygiene care 159
Management and choice of drainage system 159
Auditing the use of urinary catheters 160
References 161
Further reading and information sources 164

8 Wound infections 165
 Introduction to wounds, healing and wound infection 165
 Historical aspects of wound care 167
 Classifying wounds 167
 Wound healing 168
 Proliferative phase of wound healing 169
 Phase of maturation of wound healing 172
 Surgical intervention and approaches to wound repair 173
 Wound (surgical site) infection 174
 Auditing wound infection 176
 Identifying wound infection 176
 Factors associated with surgical wound infection 179
 Aseptic dressing technique 185
 References 186
 Further reading and information sources 188

9 Respiratory infections 190
 Introduction: the importance of respiratory infections 190
 Lower respiratory tract infections 190
 Community-acquired pneumonia 192
 Hospital-acquired pneumonia 192
 Upper respiratory tract infections 198
 Coughs and colds 198
 Acute otitis media and otitis media with effusion 200
 Croup 201
 Respiratory syncytial virus 201
 Pertussis 201
 Diphtheria 201
 Influenza 202
 References 205
 Further reading and information sources 207

10 Infections associated with intravascular devices 208
 Introduction 208
 Infections associated with intravascular devices 210
 Bacterial colonization and infection of intravascular devices 210
 Presentation of infection associated with intravascular cannulation 211
 Risk factors associated with intravascular infection 212
Types of intravascular device 214
Prevention of infection associated with intravascular devices 215
Insertion of the intravascular catheter 216
Maintaining the intravascular system 216
References 218
Further reading and information sources 220

11 Enteric infection 221
Introduction 221
Incidence of enteric infection 221
Risk factors 222
Food infection and intoxication 223
Invasive gastrointestinal infection 224
Food-borne intoxication 231
Investigating outbreaks of enteric infection in hospitals, care and nursing homes 232
Enteric infection caused by viruses 233
Viruses involved in enteric infections 233
Protozoal causes of enteric infection 235
Giardia intestinalis 235
Cryptosporidium spp. 235
Entamoeba histolytica 236
Preventing food-borne infection 236
Legal requirements 236
Training for food-handlers 237
Safe practice at home: educating the public 237
Using new methods safely 239
References 240
Further reading and information sources 242

12 Infection risks from blood and body fluids 244
Introduction: the risk of infection and health and social care practitioners 244
Human immunodeficiency virus 245
Transmission of HIV 246
Occupational health risks 246
Public health: reducing the risks of HIV infection 247
Hepatitis 247
Hepatitis B 248
Hepatitis C 251
Hepatitis D 252
Other hepatitis viruses 252
Reducing the risk of exposure to blood-borne viruses 253
Handwashing and decontamination 253
Personal protective equipment 253
Other equipment 254
Dealing with sharps 255
Dealing with sharps injuries 256
Contamination of the conjunctivae and mucous membranes 257
Spillage of blood and body fluids 258
References 259
Further reading and information sources 261
PART I

Microbiology
CHAPTER I

Microorganisms and disease

CHAPTER OUTCOMES

After reading this chapter, you should be able to:

➤ List the main groups of microorganism causing infection
➤ Explain the terms ‘infection’, ‘colonization’, ‘commensal’, ‘pathogen’, ‘opportunistic’ and ‘virulence’
➤ List the possible signs and symptoms of infection
➤ Give examples of bacteria of the following morphological types: bacilli, cocci, spirochaetes and vibrios
➤ Give an example of each of the following: Gram-negative bacterium, Gram-positive bacterium, acid-fast bacillus, a spore-forming bacterium, an aerobe and an anaerobe
➤ State the ways in which microorganisms gain access to the internal tissues of the host, and give an example for each mechanism suggested
➤ List the ways in which bacteria multiply, and point out their clinical significance
➤ List the main mechanisms by which microorganisms are disseminated, and give an example for each route suggested
➤ Explain how viruses cause disease and give an example
➤ Give one example of a human disease caused by a fungus, a protozoan, a Chlamydia and a helminthic (worm) infestation

Introduction to medical microbiology and microorganisms causing disease

Microbiology is the study of microorganisms – living organisms that are too small to be examined without a microscope. Organisms with a diameter of 0.1 mm are just visible to the naked eye, but magnification is required to study them in detail. Medical microbiology is the study of microorganisms that play a role in human infection.

Infection is caused by bacteria, viruses, fungi, protozoa and a few minor groups (mycoplasmas, rickettsiae and chlamydiae). Parasitic worms are multicellular and often clearly visible to the naked eye, but their eggs and larvae are microscopic, so
the presence of infection is frequently detected in specimens sent to the microbiology department. In recent years, minute virus-like protein particles called ‘prions’ have also been implicated in causing infection. An example is the agent causing Creutzfeldt–Jakob disease (CJD) (Chapter 14).

Bacteria

Bacteria live everywhere. Most are saprophytes (organisms that live on dead organic material) present in soil and water. They play a vital role degrading complex organic molecules from dead animals and plants into simple organic ones. These molecules are recycled during metabolism by living organisms.

Pathogenic activity

Approximately 50 species of bacteria are ‘pathogenic’ (able to cause disease). Virulence – the ability to generate infection – is a complex phenomenon related to the physiology of both pathogen and host. Some bacteria are always highly virulent. For example, exposure to *Yersinia pestis* (bacterium causing plague) will almost certainly result in infection. However, some bacteria, particularly those causing infections in hospital, are of low pathogenicity. They cause infection only in people whose immune status is compromised by illness, drugs or the invasive procedures they have undergone (for example surgery, intubation or the insertion of an intravenous line). They do not attack healthy tissues. These bacteria are called ‘opportunists’. *Pseudomonas, Klebsiella* and *Proteus* are typical opportunists.

Other bacteria live harmlessly in or on one particular part of the body. These make up the normal flora and are called ‘commensals’ (Table 1.1). They receive shelter and benefit the host by keeping potentially dangerous microorganisms at bay. If they gain access to a different anatomical location, however, they can generate infection. *Escherichia coli* (*E. coli*), normally present in the bowel, can cause urinary tract infection if it gains access to the bladder. This is an example of endogenous (self-) infection, occurring when the organisms responsible originate from the same individual. Exogenous (cross-) infection occurs when microorganisms originate from another source: patients, residents, staff or the environment.

Table 1.1 The normal human flora

<table>
<thead>
<tr>
<th>Anatomical location</th>
<th>Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Staphylococcus epidermidis, micrococi, diphtheroids</td>
</tr>
<tr>
<td>Upper respiratory tract</td>
<td>Streptococcus viridans, diphtheroids, Moraxella catarrhalis (Neisseria catarrhalis)</td>
</tr>
<tr>
<td>Large intestine/bowel</td>
<td>Bacteroides spp., Escherichia coli, Streptococcus faecalis, Proteus, clostridia, lactobacilli</td>
</tr>
<tr>
<td>Vagina</td>
<td>Lactobacilli, Staphylococcus epidermidis</td>
</tr>
</tbody>
</table>
Infection and colonization

Infection occurs when pathogens gain access to host tissues and elicit a response. Infection in a wound is indicated by the appearance of inflammation and pus. The patient may become pyrexial, and a wound swab will indicate the presence of large numbers of the causative organism.

The response to the pathogens may, however, be slight or absent, a situation described as ‘colonization’. A colonized wound is free from inflammation, a swab indicating scanty bacterial growth. When colonization occurs, several species of bacteria may be present, often referred to as ‘mixed bacterial growth’ on laboratory reports. Colonization is of clinical significance because the organism may multiply in large numbers to form a reservoir. Colonization is usually the precursor to infection when outbreaks occur (Muder et al., 1991), and even if the original patient escapes the clinical signs and symptoms of disease, cross-infection may still occur.

There are many situations in which infection may be difficult to diagnose: the very young, older adults, people with communication difficulties and people with some mental health problems or a learning disability (see below).

PRACTICE APPLICATION 1.1

Being Alert to the Possibility of Infection

The expected signs of infection may not be present, for example an elevated temperature may not always be present in older people. Health and social care practitioners need to be alert to other signs, symptoms and changes in behaviour that may indicate an infection.

For example:

➤ Complaints of feeling generally unwell
➤ A rash characteristic of the infection
➤ Chills and shivering
➤ Changes in vital signs other than temperature, such as an increase in respiratory rate
➤ General aches and pains in the muscles and joints
➤ A dry mouth with a furred tongue
➤ Loss of appetite
➤ Nausea and vomiting
➤ Diarrhoea
➤ Headache
➤ Loss of continence in adults
➤ ‘Accidents’ in previously continent toddlers and children
➤ Behavioural changes in children, becoming fretful and miserable
➤ Increasing confusion and disorientation in older adults
➤ Enlarged and tender lymph nodes
NB The knowledge that a particular infection, for example chickenpox or gastroenteritis, is present in the population at the time should alert health and social care practitioners to the possibility of infection.

Activity
Think about a patient, client or resident in your care who had an infection without the usual signs being present.

➤ What first alerted you to the possibility of an infection?
➤ Which of the features listed above were present?

Describing bacteria
Bacteria can be described in terms of their:

- Morphology (shape)
- Ultrastructure (fine detail)
- Response to dyes used on microscope specimens, for example the Gram stain reaction
- Spore formation
- Oxygen requirement.

Morphology
Four morphological forms exist (Figure 1.1):

- **Cocci** are round. When they are arranged in pairs, they are known as ‘diplococci’. Examples include *Streptococcus pneumoniae* (which causes pneumonia) and *Neisseria gonorrhoeae* (leading to gonorrhoea). Clusters of cocci are termed ‘staphylococci’. Examples include *Staphylococcus aureus*, a constituent of the normal skin flora, which in some members of the population is also able to operate as a wound pathogen, and *Staphylococcus epidermidis*, an opportunist able to cause infection in very sick people, although not in the healthy. ‘Streptococci’ are round bacteria attached to one another in chains. They cause sore throats and a wide range of other infections encountered in hospital and the community.

- **Bacilli** (for example *Pseudomonas, Klebsiella, Proteus and E. coli*) are rod shaped, occurring singly or in chains. They are notorious for their ability to cause serious infection in hospital. An extended-spectrum beta-lactamase (ESBL)-producing *E. coli*, which is resistant to several antibiotics, can cause urinary infection and is responsible for around 2,000 cases of blood poisoning each year in England and Wales (Health Protection Agency, 2007) (see Chapter 4 for beta-lactamase-producing bacteria). Several bacteria which cause food poisoning, including *Shigella* and *Salmonella*, also belong to this group.

- **Vibrios** are curved bacteria. Examples include *Vibrio cholerae* (resulting in cholera) and *Campylobacter* (responsible for food poisoning).
Spirochaetes are very small, flexible, spirally shaped bacteria. Typical members of the group include *Treponema pallidum* (which causes syphilis), *Leptospira interrogans* (serotype *icterohaemorrhagiae*) (Weil’s disease, which is transmitted to human hosts from infected rats) and *Borrelia burgdorferi* (Lyme disease).

Figure 1.1 Bacterial morphology I

All bacteria are unicellular, but their size and shape vary widely (Figure 1.1). Specimens must be ‘fixed’ (killed) and stained before they can be examined with the light microscope. Advances in electron microscopy have made it possible to study the ultrastructure of cells. The cells are, however, still dead because examination must be performed with the specimens in a vacuum. The image that appears does not represent the dynamic, living state.

Ultrastructure

The bacterial cell ultrastructure differs from that of multicellular organisms. The cells of multicellular organisms are ‘eukaryotic’ (that is, they have a true nucleus). Their genetic material is enclosed in a membrane to form this nucleus. Numerous cytoplasmic organelles (minute, subcellular structures in the cytoplasm that perform specific functions in a cell) are also present, a few exceptions being membrane bound. In contrast, bacteria are ‘prokaryotic’ (lacking a true nucleus and nuclear membrane). The chromosome containing the genetic material (nucleic acid) lies directly in the cytoplasm, as do all the organelles, including...
the ribosomes (sites of protein synthesis) and storage granules. The mesosome, an infold of the outer membrane, is the site of respiration, analogous to the eukaryotic mitochondria.

Figure 1.2 depicts a ‘typical’ bacterial cell, although few species display all the possible features shown. Some species (for example *N. gonorrhoeae*) possess hair-like processes called ‘pili’ used to attach the bacterium to a potential host, while other, highly motile forms (for example *Salmonella* and *Proteus*) have one or more flagella (Figure 1.3). However, all bacterial species are surrounded by a rigid cell wall, giving the cell support and protecting its contents. This is absent in eukaryotic cells. Some bacteria have a mucous capsule around the cell wall, reducing the risk of desiccation in dry conditions. Strains of *Klebsiella* equipped with a mucous capsule are particularly likely to contribute to cross-infection and to result in outbreaks of disease because they survive well on dry skin (Casewell and Desai, 1983).

![Figure 1.2 The ‘typical’ bacterial cell](image-url)
The Gram stain reaction

In the natural condition, bacteria are colourless. The Gram staining reaction is used in the first step of laboratory identification (see below).

Figure 1.3 Bacterial morphology II

INFORMATION BOX 1.1

The Gram stain reaction

- A thin film of the specimen is smeared onto the surface of a glass microscope slide.
- The slide is passed through the flame of a Bunsen burner 3–4 times to ‘fix’ (kill) the microorganisms.
- The slide is covered with purple dye (methyl or crystal violet) for 15 seconds, the excess fluid then being poured away.
The slide is flooded with Gram’s iodine for up to 1 minute, after which the iodine is drained.

The slide is flooded with acetone for 2–5 seconds before being washed with water or ethanol to rinse away any dye not taken up by the bacteria.

The bacteria are counterstained by pouring a red dye (carbol fuchsin) onto the slide for 20 seconds.

The slide is blotted dry and is then ready for examination. Gram-positive organisms retain the violet dye and appear deep purple. Gram-negative bacteria stain pink because they lose the violet stain, taking up the red counterstain instead.

Examples of typical Gram-positive and Gram-negative bacteria are shown in Table 1.2.

Mycobacterium does not respond well to Gram staining because the thick, waxy cell wall is impermeable to the dyes. It can be identified by the acid-fast (Ziehl–Neelsen) staining technique. *Mycobacterium tuberculosis* (tuberculosis) is thus described as being ‘acid fast’ or as the ‘acid-fast bacillus’ (AFB).

Table 1.2 Typical Gram-positive and Gram-negative bacteria

<table>
<thead>
<tr>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus</td>
<td>Acinetobacter</td>
</tr>
<tr>
<td>Clostridium</td>
<td>Bacteroides</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>Haemophilus</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Klebsiella</td>
</tr>
<tr>
<td></td>
<td>Neisseria</td>
</tr>
<tr>
<td></td>
<td>Proteus</td>
</tr>
<tr>
<td></td>
<td>Salmonella</td>
</tr>
<tr>
<td></td>
<td>Vibrio</td>
</tr>
<tr>
<td></td>
<td>Yersinia</td>
</tr>
</tbody>
</table>

The Gram stain reaction is valuable because it distinguishes structural differences between Gram-positive and Gram-negative bacteria and provides an indication of their behaviour. Much of the difference between the two groups is explained by a variation in the chemical composition of the cell wall (see Chapter 4). Gram-positive bacteria tend to be more resistant to desiccation (dehydration) and tolerate dry conditions. Gram-negative species thrive in damp situations and are generally more resistant to antibiotics. Few species of Gram-positive bacteria are flagellated, so they lack motility.

Spore formation

Clostridium and *Bacillus* form spores under adverse conditions. A thick, protective capsule surrounds the cell, and its metabolism slows. In favourable conditions, the spore germinates, releasing the bacterium. Spores are very resistant to heat and desiccation, remaining viable over long periods. The ability to form spores that will survive in adverse environmental circumstances is restricted to the Gram-positive species. The spores of *Bacillus anthracis* (causes anthrax) and *Clostridium tetani* (causes tetanus) survive dormant for years, able to withstand extremes of temperature and exposure to disinfectants that would destroy vegetative cells. Germination occurs when conditions become favourable for growth and reproduction.
Oxygen requirement
Bacteria display a variety of oxygen requirements (Table 1.3):

- Obligate aerobes – their growth demands an environmental oxygen supply
- Obligate anaerobes – those unable to tolerate the presence of oxygen
- Facultative aerobes – can grow whether or not oxygen is available.

Table 1.3 Oxygen requirements of some medically important bacteria

<table>
<thead>
<tr>
<th>Oxygen requirement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic/facultatively aerobic</td>
<td>Campylobacter</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Klebsiella</td>
</tr>
<tr>
<td></td>
<td>Neisseria gonorrhoeae</td>
</tr>
<tr>
<td></td>
<td>Neisseria meningitidis</td>
</tr>
<tr>
<td></td>
<td>Proteus</td>
</tr>
<tr>
<td></td>
<td>Salmonella</td>
</tr>
<tr>
<td></td>
<td>Shigella</td>
</tr>
<tr>
<td>Anaerobic</td>
<td>Bacteroides</td>
</tr>
<tr>
<td></td>
<td>Clostridium</td>
</tr>
<tr>
<td></td>
<td>Treponema pallidum</td>
</tr>
</tbody>
</table>

Establishing infection
Before infection is possible, a susceptible host must encounter a virulent microorganism. The pathogen must complete the following stages:

- Gain access to the host tissues
- Move to a favourable site
- Multiply successfully in spite of the defence mechanisms mustered by the host
- Reproduce so that new pathogens can escape to be disseminated, thus completing the life cycle.

Invasion: portals of entry
Invasion occurs by inhalation or ingestion, via the urogenital (urinary and genital) tracts, by inoculation and by vertical transmission:

- **Inhalation** occurs via the respiratory tract, the nose or mouth being the route taken by colds and influenza viruses and organisms causing tuberculosis, diphtheria and the infections of childhood (measles and mumps). Infectious airborne particles are released as aerosols. Droplet transmission only occurs when an individual with an infectious respiratory condition exhales forcefully, sneezes or coughs. Only the smallest particles (1–5 µm) can reach the lower airways. The length of contact between the source and the potential new case increases the risk of transmission. This is because the longer the period of exposure, the greater the risk of inhalation.
Ingestion via the mouth into the gastrointestinal tract occurs when food or water is contaminated. *Salmonella*, *Shigella*, *Campylobacter*, *Vibrio* and the virus causing poliomyelitis enter by being ingested.

The urogenital tract is the route taken by pathogens causing sexually transmitted infections (*N. gonorrhoeae*, *T. pallidum* and *Trichomonas vaginalis*). Urinary pathogens, principally Gram-negative bacilli, gain access via the urethra.

The inoculation of pathogens via the skin or mucous membranes can occur during surgical incision, accidental injury or injection with a needle (hepatitis B, hepatitis C and human immunodeficiency virus – HIV), or via the mouthparts of an insect (*Plasmodium* following a mosquito bite).

Vertical transmission occurs via the placenta from the maternal to the fetal circulation (for example rubella virus and *T. pallidum*) or by contamination as the fetus travels down the birth canal at parturition. *N. gonorrhoeae* and other microorganisms can be transferred to the eyes of the infant from an infected mother in this way, resulting in ophthalmia neonatorum (pus discharging from the eyes of an infant commencing within 21 days of birth). *Chlamydia trachomatis* can cause serious respiratory and eye infections in babies exposed to the organism during birth. Women infected with HIV may transmit the infection to the fetus via the placenta, in breast milk or at parturition when the infant is exposed to contaminated blood and cervical secretions. A baby may develop shingles if its mother had varicella (chickenpox) during pregnancy (Enders et al., 1994).

Virulence

The ability to establish an infection depends on virulence. Several factors contribute, including the size of the inoculating dose and the ability to invade host tissues and damage them.

Size of the inoculating dose

Except in the case of very virulent pathogens, a large number of microorganisms is more likely to overwhelm the host defences, and there is a greater chance that at least some will reach a site suitable for growth and multiplication. Most pathogens invade specific sites. *N. gonorrhoeae* invades the delicate cervical and urethral epithelia but not the tough squamous epithelial cells lining the mouth or vagina. Viruses responsible for colds invade the nasal epithelium and conjunctivae but not the oral mucosa.

Ability to invade host tissues

This depends on the bacterium’s morphological characteristics and its production of enzymes and toxins.

Morphological characteristics

Pili on the surface of *N. gonorrhoeae* allow it to attach to epithelial cells on the cervix uteri and urethra. Mutant strains without pili lack virulence. The presence of a
protective mucous capsule surrounding the cell wall reduces the risk of desiccation in particular strains of Gram-negative bacteria, so they survive longer on the hands and are more likely to cause cross-infection (Cooke et al., 1981).

Enzyme production

Enzyme production is a property of many bacteria. Staphylococci, streptococci and Clostridium perfringens release haemolytic enzymes, which destroy erythrocytes (red blood cells). Staphylococcus aureus releases an enzyme called ‘coagulase’, which clots plasma, thus protecting the bacteria from phagocytosis (Chapter 2).

Toxins

Toxins are of two types, depending on the mechanism of synthesis and secretion:

1. **Exotoxins** are secreted by Gram-positive bacteria and released outside the cell into the surrounding extracellular fluid, dissolving and being carried throughout the tissues. Exotoxins destroy host cells or inhibit specific metabolic functions. They include some of the most lethal chemicals known. The exotoxin secreted by Clostridium botulinum (which causes botulism) interrupts the transmission of nervous impulses, paralysing the victim. Clostridium tetani releases an exotoxin that excites neurones in the central nervous system. The muscular spasms of ‘lockjaw’ result. Exotoxins released by Staphylococcus aureus and Bacillus cereus result in food poisoning.

2. **Endotoxins** develop as part of the cell wall of Gram-negative bacteria. They include Salmonella enterica serovar Typhi (which causes typhoid), Neisseria meningitidis (meningococcal meningitis) and Shigella sonnei (dysentery). The release of endotoxins corresponds with the symptoms of fever and malaise experienced by the host.

Ability to damage host tissues

The ability to damage host tissues is closely related to the ability to invade. Damage may be structural (the tissues being physically destroyed) or physiological (normal function becoming disturbed). In most cases, both types occur. Staphylococcus aureus destroys tissue because the infection causes abscess formation. Pyrexia occurs simultaneously with this.

Bacterial growth requirements

Knowledge of bacterial growth requirements is essential when attempts are made to grow and identify organisms in the laboratory. Bacteria are unicellular and therefore more susceptible to environmental fluctuations than larger, more complex multicellular organisms. As with higher forms of life, their growth requirements include:
■ Water

■ An energy source

■ A suitable pH

■ A suitable temperature

■ Protection from ultraviolet rays.

Water

Water accounts for more than 80 per cent of the bacterial cell volume and is essential for the growth and survival of vegetative bacterial cells. Some Gram-positive species (for example *Bacillus* and *Clostridium*) avoid desiccation by forming resistant spores under adverse conditions.

Energy source

Nourishment is derived from substances available within the environment. Bacteria vary enormously in their ability to utilize different sources of nourishment:

■ Phototrophs use carbon dioxide as their sole source of carbon to synthesize all the complex organic molecules they need. Like plants, they obtain their energy from sunlight.

■ Chemotrophs obtain energy by oxidizing inorganic material.

■ Heterotrophs require a supply of nutrients such as carbohydrates or amino acids produced by other organisms. Most pathogens are heterotrophs. Generally speaking, the more adapted the organism is to a strictly pathogenic existence, the more demanding its growth requirements (for example *Pseudomonas*, *E. coli* and *Klebsiella*). In contrast, *N. gonorrhoeae* has complex growth requirements and cannot survive long outside the human host. *T. pallidum*, which is even more fastidious, has never been cultured outside living tissues.

Bacteria also vary in their ability to use sources of energy during respiration (see Oxygen requirement, above):

■ Obligate aerobes (for example *M. tuberculosis*) are unable to grow in the absence of oxygen.

■ Facultative aerobes are tolerant of the presence of free atmospheric oxygen in their environment and will grow whether or not it is available. Most human pathogens belong to this group.

■ Obligate anaerobes cannot grow unless all traces of oxygen are removed from their environment. They tend to cause infections deep within the tissues. *Clostridium* spp. cause gangrene and tetanus, infections originating when the bacteria gain access to the deep tissues.

■ Microaerophilic bacteria grow more rapidly in the presence of only traces of free oxygen.
A suitable pH

Bacteria vary widely in their tolerance of acidic or alkaline conditions, ranging from pH 4 to 9. Human pathogens generally prefer a pH within the range 7.2–7.6, but there are exceptions. Cholera vibrios, for example, thrive best at pH 8. They affect the small intestine, which receives pancreatic fluid at the same pH. Lactobacilli (part of the normal flora) inhabiting the vagina grow best at a pH of about 4.

A suitable temperature

All species have a preferred temperature range, but within this there is an optimum temperature at which they grow best:

- **Mesophilic** bacteria thrive within the 25–40 °C range. Human pathogens fall into this group, thriving optimally at 37 °C.
- **Psychrophilic** bacteria grow best at approximately 20 °C and slowly at 4 °C. They influence health not by causing infection, but by their ability to spoil food that has not been properly refrigerated.
- **Thermophilic** bacteria, growing at temperatures of 55–90 °C do not operate as human pathogens.

Protection from ultraviolet rays

Most pathogenic bacteria grow best in darkness and are rapidly destroyed by ultraviolet light, whether it is natural, in sunlight or arising from an artificial source. This is the rationale behind ‘airing’ clothing in the sun as it dries.

Bacterial reproduction and genetics

Bacteria reproduce asexually by simple binary fission, or by sexual reproduction in which there is transfer of genetic material.

Binary fission

Binary fission is a simple, asexual process involving the division of a bacterial cell into two genetically identical daughters. The rate of binary fission depends on the particular species and the environmental circumstances. In ideal conditions (for example a warm, damp hospital ward), a typical Gram-negative bacillus such as *E. coli* will divide about once every 20 minutes. Others, for example *M. tuberculosis*, divide very slowly. The results of laboratory tests for *E. coli* are available within 24 hours, but a diagnosis of tuberculosis may not become available for weeks. Treatment for tuberculosis is, however, started on the basis of clinical findings and other tests, for example skin tests, radiography and the presence of AFBs in a sputum specimen.

Asexual reproduction does not involve the exchange of genetic material so there can be no provision for genetic variation, a disadvantage as the organisms are thus limited in their ability to respond and adapt to environmental pressures.
Sexual reproduction

Sexual reproduction is, however, possible in particular bacteria containing a small amount of extrachromosomal deoxyribonucleic acid (DNA) lying within the cytoplasm. This is called a ‘plasmid’. It accounts for approximately 1 per cent of the total amount of genetic material present in those cells which contain it. A transfer of genetic material between bacteria is possible according to three mechanisms: conjugation, transduction and transformation (Figure 1.4).

(a) Conjugation

Conjugation (Figure 1.4a) is an important means of genetic exchange, particularly among Gram-negative bacilli. Sex pili coded by the DNA of a donor or ‘male’ cell attach to the recipient or ‘female’ cell. Plasmid replication follows, one copy passing to the recipient, the other remaining within the cytoplasm of the donor.

(b) Transduction

Extrachromosomal genetic material from another bacterium carried by a bacteriophage

(c) Transformation

Extrachromosomal genetic material absorbed into the bacterial cell cytoplasm

Figure 1.4 Sexual reproduction in bacteria (diagrammatic)
Transduction

Transduction (Figure 1.4b) occurs when a bacteriophage (a viral parasite of bacteria) invades a bacterial cell. Bacteriophages (or phages) operate in a manner similar to that of conventional viruses, entering the bacterium and replicating to release a large number of new infective agents, which in turn attack more bacteria. Transduction results when new phages carry extrachromosomal genetic material from the old host to a new one that previously lacked a plasmid.

Transformation

Transformation (Figure 1.4c) takes place when a strand of extrachromosomal DNA is absorbed via the cell wall into the cytoplasm of a bacterium.

Sexual reproduction in bacteria is of great clinical significance as genes conferring antibiotic resistance can be exchanged, resulting in the emergence of antibiotic-resistant strains (see below). The widespread, indiscriminate use of antibiotics encourages the survival of bacteria carrying plasmids conferring antibiotic resistance on their hosts (Chapter 4).

PRACTICE APPLICATION 1.2

Plasmid-mediated Antibiotic Resistance

Plasmid-mediated antibiotic resistance occurs between enterococci. Plasmids carrying the genes for vancomycin resistance can also spread between enterococci and other more virulent bacteria, including *Staphylococcus aureus* (Tenover et al., 2004).

Commonly, resistance to glycopeptide antibiotics (vancomycin and teicoplanin) occurs in the bowel commensals *Enterococcus faecium* and *Enterococcus faecalis*. These enterococci are known as glycopeptide-resistant enterococci (GRE) or vancomycin-resistant enterococci (VRE).

Activity

> Consider the implications of a vancomycin-resistant gene transferring from enterococci to meticillin*-resistant *Staphylococcus aureus* (MRSA). For example, how it will influence the choice of antibiotic therapy for infections caused by *Staphylococcus aureus*.

* The new British Approved Name (BAN) for methicillin.

Escape and dissemination

In many cases, bacteria leave the body via the entry route, but there are exceptions. Those causing gastroenteritis gain access via the mouth and leave in the faeces, thus being said to be disseminated by the faecal-oral route.

Microorganisms are spread from one individual to the next by direct and indirect contact. Dissemination is also possible via the airborne route, in contaminated food and water, and by insects.
Contact

Contact is the major route of spread in hospital and probably in the community too (Gould, 1991).

In hospital, bacteria are spread chiefly on the hands of staff because patients and equipment are handled so frequently, increasing the number of opportunities for cross-infection. Ignaz Semmelweiss first demonstrated the relationship between handwashing and a reduction in infection rate in a series of epidemiological studies in the 1840s. Since this time, controlled trials in hospital have been notable by their absence because withholding hand decontamination would be ethically and aesthetically undesirable (Larson, 1988). There is, however, a wealth of indirect evidence to implicate hands as vectors of cross-infection.

Persuasive evidence is provided by Casewell and Phillips (1977), who demonstrated that the hands of staff in an intensive care unit were contaminated with Klebsiella of the same strain as those colonizing and infecting the patients. Laboratory studies indicated that the bacteria could remain viable for up to 150 minutes following artificial inoculation onto the hands of volunteers – ample time for cross-infection to occur during normal nursing activities. Clothing, air and ward dust were seldom contaminated with the same strains, confirming earlier views that Gram-negative bacteria are not readily disseminated by the airborne route (Noble et al., 1976). In later studies within the same unit, the rate of cross-infection declined following the introduction of a strict regimen of hand decontamination (Casewell and Phillips, 1977).

In the community, there is evidence that many pathogens traditionally thought to rely on droplet spread are in fact disseminated by contact (Worsley et al., 1994). Laboratory simulations demonstrate that individuals are more likely to develop upper respiratory tract infection after contact with hands and objects (fomites) contaminated with the virus than after exposure to virus-laden aerosols (Gwaltney et al., 1978). It has been suggested that coughing and sneezing release infected droplets that settle onto surfaces, including clothes, in the immediate environment. Hands then transfer them to other objects (crockery, door handles and so on), reaching new victims after their hands have in turn become contaminated. The virus reaches the nose and conjunctivae when the face is touched. Hand hygiene can reduce the incidence of upper respiratory tract infection.

Similarly, rotavirus, responsible for vomiting and diarrhoea, although released in droplets, appears to be spread by hand contact. In an experimental incidence study conducted in a day nursery, a reduction in the rate of infection was demonstrated when handwashing was promoted among children and the staff attending them (Black et al., 1981). It is worth remembering that handwashing is a simple and cost-effective way to reduce infection (Gould, 1997) (see below).

PRACTICE APPLICATION 1.3

Handwashing

Handwashing is the most effective infection control measure, but it is performed too seldom by hospital staff, often because they are too busy. Hands should be washed even when gloves are worn because virus particles can leak through and contamination can occur as the gloves are removed (Gould, 1994).
Hand hygiene is equally important in the community, where it can be more difficult to achieve. For example, difficulties arise when a large number of people are seen quickly in clinics and health centres (Gould, 1997).

Activity

- Reflect on the frequency of your own handwashing when dealing with patients, clients or residents.
- Have there been occasions when it was difficult to wash your hands?

Airborne spread

Airborne spread occurs only over short distances for Gram-positive pathogens and for viral infections such as chickenpox. An extensive review of the literature confirms that cross-infection by this route is unusual outside high-risk environments such as operating theatres and burns units (Ayliffe and Lowbury, 1982). In theatre, skin scales laden with staphylococci gain access to open tissues, often by landing on the drapes from the air. They may originate from either the patient or the attendants. The airborne route is also important in burns units. The skin is the body's chief defence against bacteria, and when it is no longer intact, patients become extremely susceptible to infection.

Contaminated food and water

Contaminated food readily operates as a vehicle for bacteria. Such infection is the result of poor hygiene in homes, restaurants, fast-food outlets, shops and factories (North, 1989). In most cases, contamination occurs via the hands. *Salmonella* contaminating the fingers from infected food sources can survive handwashing. Spread is therefore by the faecal-oral route.

Waterborne spread occurs in areas where sanitation is poor. Cholera is endemic throughout much of the developing world, including Asia, but outbreaks rarely occur in the UK. Typhoid is also transmitted via contaminated water. Legionnaires’ disease (caused by the bacterium *Legionella pneumophila*) is disseminated in contaminated aerosols (Woo et al., 1986); outbreaks of this have occurred in the UK.

Insect vectors

Insect vectors disseminate infection by mechanical and biological transmission. Mechanical transmission occurs when pathogens are transferred from one locality to another via the surface of the insect, often on its feet. Houseflies operate as mechanical vectors for *Shigella* (Cohen et al., 1991). In hospital, flies, Pharaoh’s ants and other arthropods may carry pathogenic bacteria present within the clinical environment (Fotedar et al., 1992).

Biological transmission involves a complex interaction between pathogen and vector. *Plasmodium*, the agent responsible for malaria, multiplies within the gut of the mosquito, increasing the number of protozoa available to contribute to an infective dose. Transmission occurs when the insect bites a human host.
Reservoirs of infection

Reservoirs of infection develop when favourable conditions promote the growth and reproduction of a large number of bacteria. Reservoirs may develop on the skin of staff, patients or residents, leading to cross-infection. The contribution of environmental reservoirs to cross-infection depends on their situation. A large reservoir of bacteria in a drain is unlikely to contribute to healthcare-associated infection (HCAI) because there are few opportunities for transfer to susceptible individuals, but if the reservoir involves objects that have the potential for contact with patients, residents or staff, the risks are considerable.

Viruses

Viruses are the smallest microorganisms known to be infective agents. They vary in size between 10 and 300 nm, being visible only under the electron microscope. Each virus particle consists of a core of nucleic acid – either DNA or ribonucleic acid (RNA) but never both (Table 1.4). The nucleic acid is surrounded by a protein coat (or capsid) to protect it from adverse environmental conditions (Figure 1.5). Prions (see above) are less complex structures that consist of proteins but no nucleic acids. ‘Enveloped’ viruses are surrounded by a lipid and protein capsule with structures permitting them to attach to their hosts. Attachment is always at specific sites on the cell surface for which the virus has particular affinity. For example, the influenza virus attaches itself to mucoprotein receptors. Viruses lacking a capsule are described as ‘naked’. Viruses are classified by their shape and by the type of nucleic acid they contain – DNA or RNA.

![Figure 1.5 The structure of a typical virus](image)
Table 1.4 Examples of some medically significant viruses

<table>
<thead>
<tr>
<th>Viruses</th>
<th>Diseases/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA viruses</td>
<td></td>
</tr>
<tr>
<td>Adenoviruses</td>
<td>Sore throat, conjunctivitis</td>
</tr>
<tr>
<td>Herpes viruses</td>
<td></td>
</tr>
<tr>
<td>Herpes simplex types 1 and 2 (HSV-1, HSV-2)</td>
<td>Cold sores, genital infections</td>
</tr>
<tr>
<td>Varicella zoster virus (VZV)</td>
<td>Chickenpox (varicella), shingles (herpes zoster)</td>
</tr>
<tr>
<td>Epstein–Barr virus (EBV)</td>
<td>Glandular fever (infectious mononucleosis),</td>
</tr>
<tr>
<td>Cytomegalovirus (CMV)</td>
<td>Burkitt’s lymphoma</td>
</tr>
<tr>
<td></td>
<td>Cytomegalovirus infection</td>
</tr>
<tr>
<td>Hepadnavirus</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B virus (HBV)</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Papovaviruses</td>
<td></td>
</tr>
<tr>
<td>Human papilloma virus (HPV)</td>
<td>Warts, tumours (for example cervix)</td>
</tr>
<tr>
<td>Poxvirus</td>
<td></td>
</tr>
<tr>
<td>Smallpox virus</td>
<td>Smallpox (variola)</td>
</tr>
<tr>
<td>RNA viruses</td>
<td></td>
</tr>
<tr>
<td>Picornaviruses</td>
<td></td>
</tr>
<tr>
<td>Enteroviruses, poliovirus, echoviruses, coxsackie viruses</td>
<td>Poliomyelitis, respiratory infection</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A virus (HAV)</td>
<td>Common cold (coryza)</td>
</tr>
<tr>
<td></td>
<td>Hepatitis A</td>
</tr>
<tr>
<td>Togaviruses</td>
<td></td>
</tr>
<tr>
<td>Flaviviruses</td>
<td></td>
</tr>
<tr>
<td>Rubella virus</td>
<td>Yellow fever, dengue, West Nile fever, hepatitis C</td>
</tr>
<tr>
<td></td>
<td>German measles (rubella)</td>
</tr>
<tr>
<td>Reoviruses</td>
<td></td>
</tr>
<tr>
<td>Reovirus</td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Respiratory tract infection, gastroenteritis</td>
</tr>
<tr>
<td>Caliciviruses</td>
<td></td>
</tr>
<tr>
<td>Norovirus</td>
<td>Gastroenteritis</td>
</tr>
<tr>
<td>Rhabdovirus</td>
<td></td>
</tr>
<tr>
<td>Rabies virus</td>
<td></td>
</tr>
<tr>
<td>Arenavirus</td>
<td></td>
</tr>
<tr>
<td>Lassa virus</td>
<td>Lassa fever</td>
</tr>
<tr>
<td>Orthomyxovirus</td>
<td></td>
</tr>
<tr>
<td>Influenza viruses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Influenza</td>
</tr>
<tr>
<td>Paramyxoviruses</td>
<td></td>
</tr>
<tr>
<td>Parainfluenza virus</td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial virus (RSV)</td>
<td>Parainfluenza</td>
</tr>
<tr>
<td>Mumps virus</td>
<td>Respiratory infection</td>
</tr>
<tr>
<td>Measles virus</td>
<td>Mumps (infectious parotitis)</td>
</tr>
<tr>
<td></td>
<td>Measles (morbilli)</td>
</tr>
<tr>
<td>Retrovirus</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV-1, HIV-2)</td>
<td>HIV disease</td>
</tr>
<tr>
<td>Human T cell lymphotropic viruses (HTLV-I, HTLV-II)</td>
<td>Leukaemia</td>
</tr>
<tr>
<td>Filoviruses</td>
<td></td>
</tr>
<tr>
<td>Ebola virus</td>
<td>Ebola fever</td>
</tr>
<tr>
<td>Marburg virus</td>
<td>Marburg fever</td>
</tr>
</tbody>
</table>
Viruses are responsible for a wide range of human, animal and plant infections. Some, called ‘bacteriophages’ (phages), attack bacteria. Viruses depend on living organisms to provide a host; they are not capable of growth or reproduction outside living cells. Lacking cellular structure and the characteristics of living organisms, they may occupy the ‘grey’ zone between animate and inanimate organisms, perhaps resembling life as it first appeared on earth. It is, however, more likely that they represent degeneration into highly successful and sophisticated parasites. Their existence as the earliest form of ‘life’ in the absence of potential victims is hard to explain.

Life cycle

The virus gains entry by ‘endocytosis’ (a bulk transport process that transfers material into cells) and is carried into the cytoplasm in a vacuole via the cell membrane (plasma membrane), leaving its protein capsule redundant on the cell’s surface (Figure 1.6). Viral nucleic acid is then released to take over the genetic

![Figure 1.6 The life cycle of a typical virus](image_url)
machinery of the host cell. Viral DNA becomes incorporated into the DNA of the host, assuming command of genetic control. The host synthesizes viral proteins rather than its proteins, so that new virus particles are generated and eventually released, completing the life cycle. RNA viruses use the enzyme ‘reverse transcriptase’ to manufacture DNA templates of their own RNA for incorporation into the genome of the host. Some viruses lie dormant within the host cell for long periods of time but can become activated to produce active infections, a good example being herpes zoster (shingles).

Viruses and malignancy

The earliest relationship between viruses and malignancy was demonstrated in 1908 when it was established that, in poultry, a certain type of leukaemia could be transmitted to previously healthy birds from those with the disease. It is now known that viruses are responsible for malignancies in many animals, and they appear to play a role in the development of some human cancers. There is an established association between the human papilloma virus (HPV) and cervical cancer, the Epstein–Barr virus and Burkitt’s lymphoma, and the hepatitis viruses and hepatocellular cancer (Campbell, 2006). A vaccine against HPV types 6, 11, 16 and 18 has been licensed for use for females aged 9–26 years. In the UK, the vaccine against the HPV is to be added to the routine NHS immunization programme (Department of Health, 2007). It will be routinely offered to girls aged 12–13 years from the autumn of 2008, with a later catch-up programme for girls aged up to 18 years.

Fungi

Fungi are classified independently of plants and animals. Over 300,000 species are known but like bacteria, most are harmless saprophytes. Approximately 200 species cause human disease. In common with other microorganisms, some fungi (for example *Candida albicans*) can cause opportunistic infections in people who are immunocompromised (Arkell, 2003), especially those with a malignant disease (Krcmery and Barnes, 2002). *Aspergillus* species can cause severe, frequently fatal infections in people who are already immunocompromised (Kibbler, 2003). All fungi are eukaryotic, and because of the similarities between fungal and mammalian cells, it has never been easy to develop antifungal agents. The drugs used to treat fungal infections are often highly toxic, and few are available without a prescription. Some fungi, for example yeasts, assume a simple structure and exist as single cells, but complex forms exist with filamentous hyphae branching to form an extensive interwoven mesh called a ‘mycelium’ (Figure 1.7). These forms are visible to the naked eye, but as microscopic examination is necessary for identification, the diagnosis of fungal infection (mycosis) is made in the microbiology laboratory.

There are three types of mycosis:

1. **Superficial mycoses** occur when infection is superficial or restricted to the skin and its appendages (hair and nails), for example athlete’s foot (*Trichophyton interdigitale*), or mucous membranes, as in the case of vaginal thrush (*Candida albicans*).
2. **Subcutaneous mycoses** (for example mycetoma) affect the skin, subcutaneous tissues and bone. Slow, localized spread occurs.

3. **Systemic mycoses** (caused by, for example, *Cryptococcus*) develop, and then the hyphae penetrate the deeper tissues. In temperate climates, systemic mycoses are uncommon except in the immunocompromised patient.

Figure 1.7 Fungal morphology

Table 1.5 gives examples of fungi that may cause human disease.

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Mycosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>Thrush (candidiasis/candidosis)</td>
</tr>
<tr>
<td>Trichophyton interdigitale</td>
<td>Athlete's foot (tinea pedis)</td>
</tr>
<tr>
<td>Cryptococcus neoformans</td>
<td>Meningitis (immunocompromised patients)</td>
</tr>
<tr>
<td>Microsporum audouini</td>
<td>Ringworm (commonly affecting the scalp)</td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>Respiratory infection (immunocompromised patients)</td>
</tr>
</tbody>
</table>

Protozoa

Protozoa are unicellular, microscopic animals (Figure 1.8). Most species are harmless, but some operate as human pathogens, especially in hot climates. Others are a threat to the immunocompromised host (Table 1.6). *Plasmodium*, the protozoan responsible for malaria, is discussed in Chapter 14.
Figure 1.8 Pathogenic protozoa

<table>
<thead>
<tr>
<th>Protozoan</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichomonas vaginalis</td>
<td>Vaginal infection</td>
</tr>
<tr>
<td>Plasmodium spp.</td>
<td>Malaria</td>
</tr>
<tr>
<td>Trypanosoma rhodesiense, Trypanosoma brucei gambiense</td>
<td>Trypanosomiasis (some types known as ‘sleeping sickness’)</td>
</tr>
<tr>
<td>Leishmania donovani</td>
<td>Leishmaniasis – kala-azar (generalized visceral form)</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>Amoebic dysentery</td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>Latent infection, damage to fetus in utero</td>
</tr>
</tbody>
</table>

Rickettsiae and chlamydiae

These microorganisms bridge the gap between viruses and bacteria. Like viruses, they are small and rely on their hosts to grow and reproduce, but they are susceptible to antibiotics. Typhus, caused by *Rickettsia prowazeki*, is spread by human head and body lice. *Chlamydia trachomatis*, responsible for nonspecific urethritis (inflammation of the urethra), is discussed in Chapter 13. The microorganism also causes
an eye condition known as trachoma or trachoma inclusion conjunctivitis (TRIC), which can lead to blindness.

Mycoplasmas

Mycoplasmas are similar to bacteria but lack cell walls. Without a rigidly supporting outer structure, they change shape readily during growth, often becoming filamentous. The most significant mycoplasma operating as a human pathogen is *Mycoplasma pneumoniae*, which infects the lungs.

Helminths

Numerous species of helminths (worms) give rise to human infestation. Some are large and multicellular, others microscopic (Figure 1.9). There are two main groups: round and flat (Table 1.7). It is impossible to cover all types and with that in mind only the threadworm will be discussed.

<table>
<thead>
<tr>
<th>Helminth</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobius vermicularis</td>
<td>Round (threadworm/pinworm)</td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>Roundworm</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>Dog roundworm</td>
</tr>
<tr>
<td>Trichinella spiralis</td>
<td>Pork roundworm</td>
</tr>
<tr>
<td>Necator spp.</td>
<td>Roundworm (hookworm)</td>
</tr>
<tr>
<td>Strongyloides stercoralis</td>
<td>Roundworm</td>
</tr>
<tr>
<td>Taenia saginata</td>
<td>Beef tapeworm</td>
</tr>
<tr>
<td>Taenia solium</td>
<td>Pork tapeworm</td>
</tr>
<tr>
<td>Schistosoma haematobium</td>
<td>Fluke</td>
</tr>
</tbody>
</table>

Threadworms

Enterobius vermicularis, the threadworm, is probably the most common helminthic parasite in the Western world. Cats, dogs or any other domestic animals do not carry it; humans are the only hosts. The eggs are swallowed, hatch in the small intestine and migrate to the large intestine, where they live. Within two weeks, the worms reach maturity, mate and migrate to the rectum, emerging at night to lay their eggs on the perianal (around the anus) skin. The eggs adhere to the skin by a sticky fluid, which causes intense itching. When the victim scratches, large numbers of eggs are transferred to the hands and fingernails. These are thence transferred back to the mouth, recommencing the cycle of infection. People of any age can become infested with threadworms, but children are the most commonly affected (Blake, 2003). The entire family should be treated, however, as the eggs are easily transferred onto towels, soap and upholstery, and may be ingested with food if it is touched with inadequately washed hands (see Practice Application 1.4). The eggs can survive in the environment for several weeks. Threadworms are not dangerous but they can be a nuisance, causing discomfort, irritability and sleeplessness.
Figure 1.9 Helminthic infestation

(a) **A roundworm** (*Ascaris lumbricoides*)

- mouth
- intestine
- testis
- ovary
- anus

Female Male

(b) **A tapeworm**

- scolex (head)
- sucker
- neck
- hooks
- tapes
- Egg-filled mature tapes exit the body in the faeces

The hooks and sucker anchor the tapeworm to the gut wall of host.
PRACTICE APPLICATION 1.4

Controlling Threadworm Infestation

Control is achieved by:

➤ All household members taking one of the proprietary antihelminthic agents such as piperazine, which paralyses the worms, or mebendazole, which starves them by preventing sugar absorption. These preparations are available over the counter but instructions must be followed carefully.

➤ Good handwashing before eating and after using the lavatory and scrubbing of the nails, which should be kept short.

➤ Vacuuming the house (carpets and upholstery) to remove eggs and avoid reinfection.

➤ Avoiding sharing towels and flannels. Towels, flannels and bed linen should be frequently laundered.

SELF-ASSESSMENT

1. Most bacteria and fungi are pathogenic. True? or False?
2. Which of the following are typical opportunists?
 (a) Staphylococcus aureus
 (b) Candida albicans
 (c) Legionella pneumophila
 (d) None of these
3. Infection always causes an elevation in body temperature. True? or False?
4. Which of the following are bacilli?
 (a) Pseudomonas
 (b) Staphylococcus epidermidis
 (c) Mycobacterium pneumoniae
 (d) Treponema pallidum
5. What is virulence?
6. Staphylococcus aureus never forms spores, even under dry conditions. True? or False?
7. Most microorganisms are disseminated by the airborne route. True? or False?
8. Diseases caused by viruses include influenza, rubella and hepatitis A. True? or False?
9. Plasmodium is a protozoan. True? or False?
10. List the measures taken to control threadworm infestation.
REFERENCES

FURTHER READING AND INFORMATION SOURCES

Health Protection Agency (UK agency) – www.hpa.org.uk/.

INFECTION PREVENTION AND CONTROL

Index

Page numbers printed in *italic* refer to tables or boxed material; those in **bold** to figures. Page numbers preceded by an asterisk (*) denote a glossary item.

A
- abscesses 177, *319
- Acheson Report 289
- aciclovir 92, 273, 274
- acid-fast bacilli (AFBs) 10, 62, 110
- acid-fast (Ziehl–Neelsen) staining technique 10, 62, 62, *327
- acid mantle 32
- Acinetobacter 10, 82
- acquired immunity *319
- acute bronchitis *319
- acute respiratory distress syndrome (ARDS) 212
- adaptive immunity 42
- adenoviruses 21, 199
- adrenaline (epinephrine) 39
- aerosols
 - disposal 117
 - eye protection 254
- AFBs, see acid-fast bacilli
- agammaglobulinaemia, susceptibility to infection 47
- agar 63, 65, 68, *319
- ‘settle plates’ 71
- age, as risk factor for infection 47, 132, 135, 138, 139
- enteric infection 222
- surgical patients 184
- agglutination *319
- agranulocytes 34, *319
- AIDS (acquired immune deficiency syndrome) 289
 - cerebral involvement 281
 - chronic cryptosporidiosis and 236
 - gastrointestinal involvement 280–1
 - healthcare-associated infection 281
 - malignant conditions 280
 - problems associated with 280–1
 - treatment 92, 281
- see also human immunodeficiency virus (HIV) infection
- AIDS-related complex (ARC) 280
- aircraft 291, 295
- ‘airport malaria’ 294
- air samplers 71
- alcohol
 - as disinfectant 108, 109–10, 138, 216, 217
 - as drink, hepatitis C and 251–2
- allergic (hypersensitivity) reaction 38, 38–9, 80, *319, *323
- to eggs 39, 53
- amantidine 92
- Amies’ medium 70
- amikacin 87, 88, 308
- aminoglycosides 87, 87, 227
- food-borne illness 227
- mechanism/mode of action 77, 78–9, 78
- side-effects 87
- 5-aminosalicylic acid 76
- ammonium compounds, quaternary 110
- amoebae 296, *319
- amoebic dysentery 25
- amoxicillin 74, 85, 86, 200, 230, 270
- amphotericin 78, 93
- ampicillin 74, 77, 86, 230
- amprénavir 92
- amputation of limb 74
- anaemia, HIV-associated 277
- anaerobes 11, 60, 63, *319
- oblate 11, 14
- odour from wounds 179
- anaerobic jars 63
- anaphylactic shock 79, *319
- anaphylaxis 38, 38–9, 53
- angiogenesis 170, *319
- Anopheles 294–5
- Anopheles mosquito 293, 294–5
- antacids 194
- anthrax 10, 292
- antibiotic assays 79
- antibiotic-associated colitis, see pseudomembranous colitis
- antibiotic-associated diarrhoea *319
- see also pseudomembranous colitis
- antibiotic resistance 81–4, 82–3
antibiotic-resistant microorganisms 77, 81
antibiotics adverse reactions to 79–80
affecting immunity 47
bacterial resistance to 81–4, 289
classification 77
control of use of 138
definition 73
direct chemical toxicity 79
historical development 75–7
hypersensitivity reactions 79, 80
inappropriate use of 17, 74–5
mechanisms of action 78
mode of action 77–9
in otitis media 200
principles of therapy 84–5
prophylaxis 181
purpose of therapy 74–5
range of action 77
risk of vaginal infection 33
spillage 84
and superinfection 80
topical application 84
for URTIs in babies and children 200
see also individual drugs and drug groups
antibodies (immunoglobulins) 42, 43–4, 45, *319
antibody protection, in infants 47
antifungal drugs 23, 78, 92, 93
antigenic drift 55
antigenicity *319
antigen K 153
antigens *319
antigen K 153
B lymphocyte binding with/recognition of 42, 43
antihistamines 200
antimicrobial agents/ substances 33, *319
antimicrobial drugs 73–95
further reading and information sources 95
self-assessment questions/answers 93–4
antipyretics 199
antiseptics, in hand decontamination 112
antituberculosis drugs 88–9
antitussives 200
antiviral drugs 92, 92
aortic aneurysm 266
aortitis 266
aprons 119, 124, 254
ARDS (acute respiratory distress syndrome) 212
arenaviruses 21
arsenic 75
artemether 296
arthritis, see gonococcal arthritis; rheumatoid arthritis
Ascaris lumbricoides 26, 27
aseptic (non-touch) technique 185–6, 216, *319
Asian flu 203
Aspergillus spp. 23, 277
Aspergillus fumigatus 24
aspirin, children under 16 years 199
atelectasis 196, *319
athlete’s foot 23, 24
atovaquone 295, 296
attenuation *319
audit audit cycle, healthcare-associated infection (HCAI) 134
Healthcare-associated infection (HCAI) 133–4, 134
surgical wound infection 176
Augmentin 85
autism, link with MMR vaccine 50, 52
autoclaving 104, 116, 117, 198, *320
autolysis *320
avian influenza (bird flu) 204, 291
azidotrimethidine (AZT), see zidovudine
azithromycin 88, 271, 302

B babies, upper respiratory tract infection 199–200
bacille Calmette–Guérin (BCG) vaccination 307, 308
bacilli 6, 7, *320
acid-fast (AFBs) 10, 62
Bacillus 10, 14
sphere formation 10
Bacillus anthracis 10, 114
Bacillus cereus 13, 223, 232
bacitracin 84
bacteraemia 152, 209, 211, *320
bacteria 4–20, *320
airborne spread 19
antibiotic sensitivity tests 60, 64, 70
associated with surgical wound infection 175
binary fission 15
biochemical tests 64
cell ultrastructure 7–9, 8
colonies 63, 64
contact as route of spread 18–19
contaminated food and water 12, 19
cultures 63–4, 63
damage to host tissues 13
descriptive factors 6
droplet spread 18
energy sources 14–15
environmental sampling 71
enzyme production 13
escape and dissemination 17–20
faecal-oral route of dissemination 17
flagella 8, 8
genetics 15–17
Gram-positive/Gram-negative 10, 10, 13, 18
Gram stain reaction 9–10, 10
growth requirements 13–15
HIV-associated 277
identification of 62–4
insect vectors 19
invasion of host tissues 13
mesophilic 15
microaerophilic 14
mixed bacterial growth 5
morphology 6–7, 7, 9, 12–13
mutation 83
opportunist 4
oxygen requirements 11, 11
pathogenic activity 4
psychrophilic 15
reproduction 15–17
resistance to antibiotics 81–4, 289
serological tests 64
sexual reproduction 16–17, 16
spore formation 10
spread of 17–20
temperature range 15
thermophilic 15
toxins 13
typing 64
ultrastructure 7–9, 7
ultraviolet rays affecting 15
virulence 4, 12–13
see also infection; microorganisms; and individual bacteria
bacterial meningitis 296, 296
bacterial resistance 83–4
bacterial vaginosis 276
bactericidal agents 77, *320
bacteriological growth curve *320
bacteriophages (phages) 22, *320
phage typing 64, 135
bacteriostatic agents 78, *320
bacteriuria 152, 160, *320
Bacteroides 4, 10, 11, 60
Bags, colour-coded 117, 118
balanitis 274
barrier nursing, see isolation
B cells, see B lymphocytes
bedpan washers 107, 107, 141, 226
beef tapeworm 26
behaviour, altered, epidemics and 54
benzylpenicillin 86, 298
beta-lactam antibiotics 85, 85
beta-lactamase enzymes 85, 270
beta-lactamase resistant penicillins 86
binary fission 15, *320
biofilm 153, 154, 210, 212, *320
bird flu (avian influenza) 204, 291
Black Death 287
bladder, infection 33
blood
infection risks from 244–61
standard precautions/ principles for 253
blood-borne pathogens (BBPs) 244
blood-borne viruses (BBVs) 244
blood cultures 70
blood exposure
blood spillage 258
further reading and information sources 261
self-assessment questions/answers 258, 318
bloodstream infection, see bacteraemia
blood–brain barrier *320
B lymphocytes (B cells) 42, 43–4, *320
antibodies, see antibodies
antigen specificity 43
binding with antigen 42
clonal expansion 43
clonal selection 43
clonal suppression 43
immunoglobulins, see antibodies
body fluids *320
further reading and information sources 261
infection risks from 244–61
self-assessment questions/ answers 258, 318
spillage 258
standard precautions/ principles for 253
body temperature 40–1, 184
bone lesions 267
bone marrow
HIV-associated lesions 277
suppression, as side-effect of antiviral drugs 92
transplantation 124, 215
bones, deformities 267
 Bordetella pertussis 70, 201
Borrelia burgdorferi 7
botulism 13, 232
bovine spongiform encephalopathy (BSE) 289, 300
bovine tuberculosis 307
bowel
normal human flora 4
perforated, as complication of typhoid fever 302
preoperative preparation 181
bradykinin 35, *320
bronchial occlusion with mucus plug, as source of pathogens 196
bronchiolitis 201
bronchitis *320
 acute 191, *319
 chronic 90, 191, *320
bronchopneumonia 191
Broviac catheters 214
brucellosis 41
BSE (bovine spongiform encephalopathy) 289, 300
bubonic plague 287
Burkitt’s lymphoma 21, 23, 290
burns 19, 76
C
 calicivirus 21
Campylobacter 6, 11, 12, 223
Campylobacter coli 227
Campylobacter jejuni 227
 cancer
 cervical 23, 271, 290
 hepatocellular 23, 249, 251
 liver 290
Candida 274–5, 277, 281, 296
Candida albicans 23, 24, 65, 211, 274
candidiasis (candidosis; thrush) 24, 274–5
 associated with antibiotic use 264–5, 275
 associated with diabetes mellitus 264, 275
 treatment 275
 vaginal thrush 23, 33
candidosis, see candidiasis
cannulation, see
 intravascular cannulation
capreomycin 88, 308
capsule *320
cardiac surgery 74
Care Quality Commission 132
carrier *320
catheter-associated urinary tract infection (CAUTI) 151
 complications 153–5
 guidelines on prevention of 160
risk 152
 source of pathogens responsible for 155–6
 see also urinary catheterization
catheterization, see urinary catheterization; urinary catheters
 catheters, see intravascular devices; urinary catheters; urinary drainage systems
 cefaclor 86
 cefadroxil 86
 cefalexin 86
 cefotaxime 86, 87, 298, 302
 cefpodoxime proxetil 86
cefradine 86
 cefazidime 86
ceftiraxone 80, 86, 298
cefuroxime 86
 cell-mediated immunity 45–6, *320
cells
 bacterial 7–9, 8
 eukaryotic 7–8, *322
 mast cells 38, *324
 memory cell *324
 natural killer (NK) cells 37, 44, *324
 plasma cells *325
 prokaryotic 7–8, *326
 see also B lymphocytes; leucocytes;
 lymphocytes; T lymphocytes
 cellulitis 177, *320
 cellulose *320
 cell wall *320
 central nervous system, HIV-associated infection/lesions 277
 central venous access devices (CVADs) 215–16, 216, 217, 218
 cephalosporins 74, 86, 87, 298
 cost 87
 discovery of 77
 hypersensitivity (allergic) reactions to 79
 mechanism/mode of action 77, 78, 78
 oral 80, 86
 parenteral 86
 range of action 77
 resistance to 82
 and superinfection 80, 87
 cerebrospinal fluid (CSF), specimens 70
 cervical cancer 23, 271, 290
 cervical swabs 70
 cetrimide 110
 Chain, Ernst 76
 chancres 265, *320
 chemical disinfectants 107–10
 alcohol 108, 109–10, 138, 216, 217
 chlorhexidine, see chlorhexidine
 effectiveness factors 108
 glutaraldehyde 108, 109, 109, 111, 115
 hexachlorophane 110
 hydrogen peroxide 110, 185
 hypohlorites 108, 109–9, 109, 111, 258
 phenolics 108, 111
 quaternary ammonium compounds 110
 chemicals, as sterilization method 115
 chemoprophylaxis 181, *320
 antibiotics 73, 84
 situations for appropriate use of 74
 see also prophylaxis
 chemotaxis 36, *321
 chemotaxis 36, *321
 chemotrophs 14
 chest infection, postoperative, prevention 196–7
 chickenpox (varicella) 12, 19, 21, 49
 children
 genetic deficiencies 47
 HIV infection 282–3
 mortality, effect of antibiotics 76
preschool, measles vaccination 51
routine immunization 50, 50
upper respiratory tract infection 199–200
Chlamydia, national screening programme
Chlamydia trachomatis 12, 25, 270–1
chlamydiae 25–6, 77
chlamydial infections 88
chloramphenicol 89, 298, 302
depressant effect on bone marrow 79
discovery of 77
mechanism/mode of action 78, 78
range of action 77
chlorhexidine 110, 197
and catheterization 159, 216, 217
in MRSA treatment 137
chloroquine 295, 296
cholera 6, 19, 291, 303–4
diagnosis 303
in London 303
notifiable disease 292
prevention 303
transmission 303
treatment 304
cholera vibrios 6, 15, 303
choloiditis 267
choloidoretinitis 299
cilia *321
cimetidine 194
ciprofloxacin 91, 225, 298, 302
increasing Neisseria gonorrhoeae resistance to 75
cirrhosis 249, 252
CJD, see Creutzfeldt–Jakob disease
clarithromycin 88
clavulanic acid, with ticarcillin 85, 86
cleaning 104–6, *321
colour-coding of materials and equipment 105–6
good practice policy 104–5, 105
precleaning instruments 106
cleanyourhands campaign 114
decidamycin 90, 276, 296, 300
clinical infection *321
clinical waste *321
clonal expansion 43
clonal selection 43
clonal suppression 43
clostridia 4, 10, 83, 231–2
Clostridium spp. 10, 11, 14, 114
spore formation 10
Clostridium botulinum 13, 223, 232
Clostridium difficile 47, 90, 138
increasing incidence 114
infection control precautions 138
mandatory reporting 138
in older patients 132
preventing spread of 81
risk factors 138
superinfection 80
symptoms and diagnosis 138
Clostridium perfringens 13, 74, 175, 223, 232
Clostridium tetani 10, 13
clothing, see protective clothing
clotrimazole 93, 275
doxacillin, resistance to 82
Clutton’s joints 267
coagulase 13, 135, *321
coagulase-negative staphylococci (CNSs) 137–8
cocci 6, 7, *321
Coccidioides, causing meningitis 296
Coccidioides immitis 277
cohort *321
colds, see common cold
cold sores 21, 272
coliforms 142
colistin 77, 84, 91
colitis
haemorrhagic 228
pseudomembranous (antibiotic-associated) 80, 90, 91, 138, *326
ulcerative 76
collagen *321
collagenase 169
collagen synthesis 169–70
colonies 63, 64, *321
colonization 5, *321
colorectal surgery 74
commensals 4, *321
Commission for Social Care Inspection 132
common cold 21, 47, 198–9
viruses causing 198, 199
communicable diseases *321
changing trends 293
changing trends/patterns 286–316
control of, in UK 291–2
further reading and information sources 315–16
self-assessment questions/answers 312, 318
community health, immunity and 48–50
competitive inhibition 78
complement 38
complementary therapies, for recurrent genital herpes 274
complement cascade 37, 38, 44
complement fixation 38
complement proteins 38, *321
condoms 263
condom drainage systems 153
condylomata lata 266, 266, *321
conjugation 16, 16, 83, *321
conjunctivae, blood/body fluid contamination of 257
conjunctivitis 21
trachoma inclusion conjunctivitis (TRIC) 26
Consumer Protection Act 1987 115
contagious diseases, distribution 287–9
contamination high-risk factors 102–3 see also decontamination; recontamination
Control of Substances Hazardous to Health (COSHH) Regulations 109
convulsions, in pyrexia 40
Cooke Report 142
cook–chill 239
coronary artery bypass graft operations, infection incidence 182
coronaviruses 199, 308
corticosteroids, affecting resistance to infection 185
Cornebacterium 10
Cornebacterium diphtheriae 201–2
coryza, see common cold
COSHH (Control of Substances Hazardous to Health) Regulations 109
co-trimoxazole 90
coughs and colds 198–9
cowpox 48
cows’ milk, allergy to 39
coxsackie viruses 21, 199, 296
cranberry juice 153
C reactive protein (CRP) 60
Creutzfeldt–Jakob disease (CJD) 300–1, *321
new variant (vCJD) 300
critical care units 112, 125
crockery, disinfection 118
Crohn’s disease 50, 76
cross-infection 18, 20, *320
croup (laryngeal spasm) 201, *321
cryotherapy, for genital warts 271
Cryptococcus 24, 277
Cryptococcus neoformans 24, 296
cryptosporidiosis, chronic 236
Cryptosporidium spp. 235–6, 277
CSF (cerebrospinal fluid), specimens 70
cultures bacterial 63–4, 63
blood 70
fungal 65
viral 65
cutaneous infection, localized, in cannulation 211
cutery, disinfection 118
cytisits 153, *321
cytokines *321
cytomegalovirus (CMV) 21, 277
cytomegalovirus (CMV) infection, treatment 92
cytotoxic *321
D
dalfopristin 91, 137
Dane particle 248
dark ground microscopy 62, 267
defeatness 267
diabetes mellitus
affecting resistance to infection 47–8, 184
candidiasis associated with 264, 275
clean wound infection rate 184
diagnostic laboratory services 60–5
diapedesis 36
diarrhoea antibiotic-associated *319 see also pseudomembranous colitis
HIV-associated 277
diathermy 182
didanosine 92
diphtheria 48, 52, 201–2, 292
diptheroids 4
diplococci 6, 7
diploid *321
diseases contagious 287–9
endemic 287
infectious, see infection; infectious diseases
dishwashers 107
disinfectants chemical, see chemical disinfectants
hospital policies 111
disinfection 106–11
by chemicals, see chemical disinfectants
by heat (pasteurization) 106–7
contact time 104
Crockery and cutlery 118
definition 106, *321
hot-water disinfectors 107
staff training 111
disseminated infection, HIV-associated 277
disseminated intravascular coagulation (DIC) 212
distemper 47
DNA viruses 20, 21
dog roundworms 26
Domagk, Gerhard 75–6
doxycycline 88, 295, 296, 304, 305
for Chlamydia 271
for syphilis 268

dressings
intravascular devices and 217
see also wound dressings
drugs
affecting immunity 47
allergy to 39
further reading and information sources 95
misuse of, and HIV 246

self-assessment questions/answers 93–4, 317
see also individual drugs and drug groups
dyestuffs 75–6

dysentery 13, 227, 228, 292
amoebic 25

E
Ebola fever 21, 309
Ebola virus 21
EBV (Epstein–Barr virus) 21, 23, 290, 296
echoviruses 21, 199, 296
econazole 275
ectoparasite *322
efavirenz 92
eggs
allergy to 39, 53
Salmonella and 124, 224–5
Ehrlich, Paul 75, 81
electrofulguration, for genital warts 272
electron microscopy *322
ELISA (enzyme-linked immunosorbent assay) 65, *322
EMRSA (epidemic meticillin-resistant Staphylococcus aureus) 136
encephalitis 273, 274, 299
acute, notifiable disease 292
encephalopathy 199
encrustation 153, 154, *322
endemic disease 287, *322
endocarditis 140, *322
infective 74, 140
endocytosis 22, 36
endoparasites *322
endotoxins 13, *322
endotracheal intubation, as source of pathogens 194–5
energy sources, for bacteria 14
Entamoeba 25
Entamoeba histolytica 25, 236
enteric fevers 301–2
enteric infections 221–43
contributory factors 222
further reading and information sources 242–3
incidence 221–2
investigating outbreaks 232–3, 233
protozoal causes 235–6
risk factors 222–3
self-assessment questions/answers 239–40, 318
viral causes 233–5
see also food-borne infection; food intoxication; and individual causative microorganisms
Enterobius vermicularis 26, 26
enterococci 140–2
glycopeptide-resistant (GRE) 17, 82, 90
multiresistant strains 82
resistance to glycopeptide 140
sources of 141
vancomycin-resistant (VRE) 17, 82, 90, 140
Enterococcus faecalis 17, 140, 153
Enterococcus faecium 17, 82, 140
vancomycin-resistant 91
enteroviruses 21
environment, environmental sampling 71
environmental factors, epidemics and 54–5
Environmental Protection Act 1990 117
enzyme-linked immunosorbent assay (ELISA) 65, 233, *322
enzyme production, bacteria 13
cosinophils 34, 37, 44, *322
epidemic infection *322
epidemic meticillin-resistant Staphylococcus aureus (EMRSA) 136
epidemics 54–5, 287, *322
epidemiological data 290, 290
epidemiology
definition 286
epidemiological curves 287–9, 287–9
further reading and information sources 315–16
self-assessment questions/answers 312, 318
epididymitis 269, 270
epiglottitis 52, 201
epinephrine, see adrenaline
epithelialization 171–2, *322
epithelium *322
epitopes 42, 43
Epstein–Barr virus (EBV) 21, 23, 290, 296
equipment
autoclaving 104, 116, 117, *320
decontamination 104, 105–6, 107, 111
infection risk 103
maintaining 107
precleaning instruments 106
see also cleaning; disinfection
erhema 211
erthromycin 74, 88, 202, 227, 305
for Chlamydia 271
discovery of 77
food-borne illness 227
mechanism/mode of action 78
range of action 77
for syphilis 268
ESBL (extended-spectrum beta-lactamase) 6
ESBL (extended-spectrum beta-lactamase)-producing E. coli 153
Escherichia coli 4, 6, 10, 87
0157: 229, 229–30
causing food-borne infection 228–9
causing meningitis 296
causing urinary infection 153
colonization 142
enterohaemorrhagic (EHEC) 228–9
enteropathic (EPEC) 228
enterotoxigenic (ETEC) 228
enterovasive (EIEC) 228
colonization 142
enterohaemorrhagic (EHEC) 228–9
enteropathic (EPEC) 228
enterotoxigenic (ETEC) 228
enterovasive (EIEC) 228
oxygen and growth requirements 11, 14
penicillin-resistant 85
reproduction 15
Scottish outbreaks 229, 289
serotypes 228–9
vero cytotoxin-producing (VTEC) 229
ethambutal 88
ethanol 109–10
ethyline oxide 115
ethyline oxide gas 115
eukaryotic cells 7–8, *322
exogenous infection *322
exotoxins 13, *322
extended-spectrum beta-lactamase (ESBL) 6, 87
extended-spectrum beta-lactamase (ESBL)-producing E. coli 153
extensively drug-resistant tuberculosis (XDR-TB) 88, 308, *322
eye protection 254
eye swabs 70

F
face masks 254
facultative *322
see also aerobes
facial soiling 226
famiclovir 273, 274
fibrin 178
fibroblast *322
filoviruses 21
filtration, as sterilization method 115
first (primary) intention 169–72, *325
flagella 8, 9, *322
flaviviruses 21
Fleming, Sir Alexander 76
flies 19
flora, normal 4, *324
Florley, Sir Howard 76
fluconazole 93, 275
flucytosine 93
fluorescent antibody techniques *322
fluorescent treponemal antibody-absorbed (FTA-ABS) test 268
fluoroquinolones 308
fomites 18, *322
food
buying 237–8
contamination 12, 19, 236
Hazard Analysis Critical Control Point (HACCP) quality control system 239
and protective isolation 124
safe practices in the home 237
storage 238
see also enteric infection;
food preparation
food-borne illness 223, 237–9
food-borne infection 223–31, 223, 236–9, *322
food-handlers, training for 237
food hygiene, legal requirements 236–7
Food Hygiene (England) Regulations 2006 237
food infections 223–4, 223
food intoxication 223, 224, 231–2, *322
food poisoning 6, 223, 292
food preparation
cooking and reheating 238–9
cook–chill 239
food hygiene legislation 236–7
in the home 238
new methods 239
Food Standards Agency 237
foreign bodies, in wounds 182–3
formaldehyde gas 115
foscamet 92
fucidic acid 90
fungal meningitis 296
fungi 23–4, *322
antifungal drugs 23, 92, 93
HIV-associated 277
identifying infections 65
infection, see mycoses
morphology 24
G
ganciclovir 92
gangrene 14, *322
Gardnerella vaginalis 276
gas gangrene 74
gastric acid 32, 194
gastritis 91
gastroenteritis 17, 21, 223
invasive intestinal *322
norovirus causing 234
see also invasive gastrointestinal infection
gastrointestinal tract
HIV and 277, 280–1
innate immunity 32
gender, affecting resistance to infection 184
general paralysis of the insane *322–3
genital herpes 273, 273–4

risk assessment approach 141–2
glycopeptides 90
gonococcal arthritis 269
gonococcal vulvovaginitis 269
gonococcus, see Neisseria gonorrhoeae
gonorrhoea 6, 269–70, 270
gown 119, 254
Gram-negative infections 142
Gram-negative rods, surgical wound infection 175
Gram staining 9–10, 62, *323
gramulation 173
gramulation tissue 178, *323
granulocytes 34, 323
granulomatous disease, chronic 47
griseofulvin 93
growth factors, in wound healing 168
Guillain–Barré syndrome 227
gummata 266, *323
H
haemolysin *323
haemolytic uraemic syndrome (HUS) 229
haemophilia, HIV transmission to people with 246
Haemophilus 10
Haemophilus influenzae 52, 90, 192, 201, 203
meningitis 89, 296, 296
type B (Hib), vaccine 49, 52
haemorrhagic colitis 228
HAI (hospital-acquired infection) *323
hair covering 120
hand hygiene 18–19, 111–14, 125, 156
decontamination 111–14, 113
handwashing 18, 18–19, 112, 124
intravascular cannulation 216, 217
handrubs 112–14, 138
handwashing 18, 18–19, 112, 124
Hazard Analysis Critical Control Point (HACCP) system of food quality control 239
HCAI, see healthcare-associated infection
ingwelling, see wound healing
healthcare-associated infection (HCAI) 100–1, 131–48, 290, *323
audit 133–4
control measures 131–2
cost 131
definition 131
enteric infection 232–3, 233
extent of 132
further reading and information sources 148
Gram-negative infections 142
incidence surveys 132
infection, audit documentation 134
monitoring 133–4
as occupational health risk 245
in older patients 132
pathogens causing 135–42
pneumonia 192–8
prevalence surveys 132
prevention 142–4
respiratory tract infections 190
salmonellosis 226
self-assessment questions/answers 144, 317
significance of 131–2
staphylococcal infection 135–8
streptococcal infection 138–40
surgical site infections 175
surveillance 133
urinary infection 132, 151, 160
see also nosocomial (hospital-acquired) infection
Healthcare Commission 132
healthcare workers, protection against infection 250, 253
health professionals, infection as occupational health risk 246
health promotion 53
Health Protection Agency 133, 291–2
Health Protection Scotland 291
Health and Safety at Work legislation 245
health and social care staff, infection as occupational health risk 244, 245
heat, as disinfection/sterilization method 106–7, 115–16, 115
heat gain/conservation 40, 41
heat loss 40, 41
heat–moisture exchange (HME) filters 197, 198
Helicobacter pylori 91
helminths 26–8, 26–7
hepadnavirus 21
hepatitis 199, 247–52, *323 non-A, non-B, see hepatitis C
viral, treatment 92
virus 290
hepatitis A 21, 49
hepatitis A virus (HAV) 21, 233–4
hepatitis B 12, 21, 248–51 chronic, drug treatment 252
high-risk groups 249
immunization 249, 250, 257
labelling specimens 71
nosocomial 251
patent risk 251
prevention 250
reducing the infection risk 250
slow responders to vaccination 250
transmission 249
treatment 92
vaccine 49
hepatitis B virus (HBV) 21, 248–9, *248
antigens 248
detection of 248
and hypochlorites 108
incubation period 248–9
terminology 248
hepatitis C 12, 21, 251–2
chronic, drug treatment 252
labelling specimens 71
treatment 92
hepatitis C virus (HCV) 251
hepatitis D 250, 252
hepatitis D (delta) virus (HDV) 252
hepatitis E virus (HEV) 234
hepatitis F 252
hepatitis G 252
hepatocellular cancer 23, 249, 251
hepatocellular necrosis 249
hepatosplenomegaly 267, 299
herd immunity 48, 50
herpes simplex virus (HSV) 21, 272–4, 277
causing meningitis 296
genital herpes 273, 273–4
oral herpes infection, primary/recurrent 273
treatment 92
types 272
herpes viruses 21
herpes zoster 21, 23
herpes zoster virus 277
heterotrophs 14
hexachlorophane 110
Hib (Haemophilus influenzae type B) vaccine 49, 52
Hickman catheters 214–15, 215
histamine 35, *323
Histoplasma, causing meningitis 296
Histoplasma capsulatum 277
HIV, see human immunodeficiency virus
hookworms 26
hospital-acquired infection (HAI) *323
see also healthcare-associated infection; infection control; nosocomial (hospital-acquired) infection
hospital fever, see typhus
hospitals
alternatives to sharps 255
disinfection policies 111
hygiene 101
kitchens, and Crown immunity 226
length of stay, and wound infection rate 182
microbiology
departments, see laboratory services
occupational health department (OHD) 257
patients’ infection risk factors 55–6, 100
hot-water disinfectors 107	houseflies 19
HTLV (human T cell lymphotropic viruses) 21
human immunodeficiency virus (HIV) 12, 21, 54, 55, 245–6
and alcohol disinfection 110
causing meningitis 296
during childhood 282–3
exposure, percutaneous/mucotaneous 246, 249
and hypochlorites 108
labelling specimens 71
occupational health risks 246–7
post-exposure prophylaxis (PEP) 257
public health measures 247
tests 245
transmission 246, 265, 277–8
vaccination/immunization 55, 247
see also AIDS
human immunodeficiency virus (HIV) infection 276–83
confidential voluntary referral scheme 292
historical aspects 277–8
manifestations 279–80
opportunistic infections associated with 277
prevalence 278–9
stages 279–80, 280
treatment 92, 281
trends in 278–9
women and 281–2, 282
see also AIDS
human papilloma virus (HPV) 21, 23, 271
vaccine 49, 50
human T cell lymphotropic viruses (HTLVs) 21
humidifiers 195, 198
humoral immunity 42–5, *323
antibodies (immunoglobulins) 42, 43–4, 45, 45, *319
antigen specificity 43
clonal expansion 43
clonal selection 43
clonal suppression 43
key features 42–3
Hutchinson’s incisors 267
hydrocolloids 185, 186
hydrogen peroxide 110, 185
hydrophobia 310
hygiene, preoperative 181
see also hand hygiene
hypersensitivity (allergic) reaction 38, 38–9, 80, *319, *323
to eggs 39, 53
hypochlorites 108, 108–9, 109, 111
hypochlorite solution 258
hypothalamus, and body temperature 40
I
imidazoles 93
imiquimod 271, 272
immobility, affecting immunity 48
immune response 31, 44, 47–8
immune system, genetic defects 47
immunity acquired 48, *319
adaptive (specific/acquired) 42–6
cell-mediated 45–6, *320
community health and 48–50
definition 31, *323
factors affecting 47–8
humoral 42–5, *323
innate (natural/nonspecific) 32–41
specific 48
through the lifespan 47–8
types of 32–46
see also immune response; immune system
immunization benefits of 50
definition 49, *323
routine, for children and young people 50
uptake in children and young people 50
vaccination 49
see also vaccination
immunocompromised persons 212, 299, 304, *323
enteric infection risks 222, 230, 235
immunodeficiency *325
immunoglobulin E (IgE) 38
immunoglobulins, see antibodies
immunology, definition 32
immunosuppression 275, 277, *323
incidence 290, *323
incontinence aids and garments 153
incubation period *323
see also individual organisms/diseases
infants, urine specimens 67
infection *323
bacterial 5–6
body’s response to, see infection, body’s response to causes 3–4
clinical *321
control, see infection control; infection prevention and control services in hospital
cross-infection 18, 20, *321
endogenous (self-infection) 4, *322
entry portals 11–12
epidemic *322
establishing 11
exogenous (cross-infection) 4, *322
hospital-acquired, see nosocomial (hospital-acquired) infection
intravascular devices 208–20
latent *324
nosocomial, see nosocomial (hospital-acquired) infection
opportunistic *325
predisposition to 47–8
prevention principles 102
prevention strategies 99–103
pyogenic (pus-forming) 135
reservoirs of 20, *326
sexually transmitted 12
signs and symptoms 5–6
source of *326
species specific 47
subclinical *327
superinfection *327
susceptibility factors 47
virulence 4, 12–13, 106, *327
see also
chemoprophylaxis; contamination; healthcare-associated infection; hospital-acquired infection; wound infection
infection, body’s response to 31–58
further reading and information sources 58
pyrexia 39–40
self-assessment questions/answers 56, 317
temperature regulation 40–1
see also immune system; immunity
infection control 99–130
further reading and information sources 129–30
international recommendations 291
in non-hospital settings 100–1
prevention of infection 99–103
risk management 103, 103
self-assessment questions/answers 125, 317
see also decontamination; disinfection
infection prevention and control services in hospital
infection control policy 144
infection control teams 142–3
infection prevention and control committee 142, 143, 143
role 143
specialist nurse role 143
standards/guidelines/policies 144
infectious diseases 289–90, *323
see also communicable diseases; infection; notifiable infections; and individual infectious disease
infectious mononucleosis, see glandular fever
infectious parotitis, see mumps
infective endocarditis 74
inflammation 33–6, 35, 182, *323
inflammatory bowel disease 76
see also Crohn’s disease
inflammatory response 47, 169, 173, 176
influenza 21, 202–4
causing meningitis 296
protecting care home residents 203
at-risk groups 203
treatment 92
vaccination 203–4
vaccine 49, 53
virus types 21, 202–3
infection, prevention by 12
inhalation, infection by 11
innate immunity
limiting spread 33–41
preventing invasion 32–3
inoculation, of pathogens, infection by 12
inoculum *323
insecticide sprays 295
insect stings, allergy to 39
insect vectors 19
instruments, precleaning 106
interferons (IFNs) 37, 38, 92, *323
interleukins (ILs) 46, *323
intestinal haemorrhage, as complication of typhoid fever 302
intestine, large, normal human flora 4
intravascular cannulation
insertion 216
contamination of infusion fluids 217
filters 218
hand hygiene 216, 217
maintaining the system 216–17
presentation of infection associated with 211
reasons for 208
skin cleansing 216, 217
sterile dressings 217
therapy team 218
intravascular devices 208–20
bacterial colonization 210–11
central/arterial vs peripheral catheterization 215
further reading and information sources 220
infection prevention 215–18, 216
infection risk factors 212–14
infections associated with 208–14, 210
material 214
morbidity and mortality surveillance 209
portals of entry 209
self-assessment questions/answers 218, 318
time in situ 212
types 214–15
intravascular infection, risk factors 212–14
intubation, as source of pathogens 194–5
invasive device/procedure *323
invasive gastrointestinal infection 223, 224–31
invasive intestinal gastroenteritis *322
iodophors 110
isolation 122–5, *324
categories of 123–4
disease-specific precautions 123
protective 124–5, *326
isoniazid 88, 308
isopropanol 109–10, 111
itraconazole 93, 275
INDEX

J
Jarisch–Herxheimer reaction 268
Jenner, Edward 48
joints, effusion of 267

K
kala-azar 25
kanamycin 308
Kaposi’s sarcoma 277, 278, 280, *324
keratin 171
keratitis 267
ketoconazole 93
Klebsiella 4, 6, 8, 10
causing urinary infection 153
colonization 142
cross-infection 18
oxygen and growth requirements 11, 14
and superinfection 80

L
laboratory services 59–72
diagnostic services 60–5
further reading and information sources 72
interpretation of results 71–2
reports 60, 61
self-assessment questions/answers 72, 317
staff functions 59
see also microscopy; near-patient testing; specimens
lactobacilli 4, 15, 33
Lactobacillus 276
lamivudine 92
large intestine, normal human flora 4
laryngeal spasm (croup) 201
Lassa fever 21, 309
Lassa virus 21
latent infection *324
latex, allergy to 38, 39
laundry 118
Legionella 88
Legionella pneumophila 19, 192, 194, 304
Legionnaires’ disease 19, 289, 304–5
legislation, food hygiene 236–7
Leishmania 277
Leishmania donovani 25
leishmaniasis 25
leprosy, notifiable disease 292
Leptospira interrogans ser.
icterohaemorrhagiae 7
leptospirosis, notifiable disease 292
leucocytes 34, *324
polymorphonuclear *325
leucopoiesis *324
leukaemia 21
levofloxacin 91
linezolid 90, 137
Listeria, food infection 124, 222–3
Listeria monocytogenes 230–1, 296
listeriosis 230
neonatal 230
Lister, Joseph 167
live attenuated vaccines *324
liver, HIV-associated lesions 277
liver cancer 290
lobar pneumonia 191
lockjaw, see tetanus
locomotor ataxia, see tabes dorsalis
lower respiratory tract infections (LRTIs) 190–8
lumbar punctures 70
lumefantrine 296
Lyme disease 7
lymphadenopathy 267
persistent generalized (PGL) 279
lymphocytes 34, *324
CD4 (T helper) 276–7
see also B lymphocytes; T lymphocytes
lymphocytopenia 47
lymphokines 37, 46, *324
lysozyme 33, *324

M
MacConkey’s agar/medium 63
maceration 177
macerators 107
macrolides 88
macrophages 35, *324
maculopapular rash 266
mad cow disease, see bovine spongiform encephalopathy
malaise *324
malaria 19, 25, 74, 293–6
‘airport malaria’ 294
causative parasites 293
chemoprophylaxis 295, 295
diagnosis 295
malignant 293
notifiable disease 292
prevention 294–5
transmission 19, 294
treatment 296
Malarone, see atovaquone
malignancy 23, 47–8, 185
malnutrition, affecting immunity 48
Mantoux skin testing 307
Marburg fever 21, 309
Marburg virus 21
masks, surgical 119–20
mass catering, food risk 223
mast cells 38, *324
maturation phase, of wound healing 168, 172
MDR-TB, see multidrug-resistant tuberculosis
measles 21, 51, 292
MMR (measles/mumps/rubella) vaccine 49, 50, 52
vaccine 51
measles virus 21
mebendazole 28
meclizamines 86
medical microbiology, definition 3
mefloquine 295
membrane attack complex 38
memory cell *324
meningitis 24, 267, 292, 296–8, *324
bacterial 52, 296, 296
diagnosis 298
fungal 296
Haemophilus influenzae meningitis 89
and listeriosis 230
meningococcal, see meningococcal meningitis
microorganisms causing 296
in newborns 139
notifiable disease 292
protozoal 296
signs and symptoms 297
Streptococcus pneumoniae causing 140
transmission 298
viral 296
meningococcal disease, Group C, vaccine 48, 52
meningococcal meningitis 13, 74, 296, 297, 298
prevention of spread 298
chemoprophylaxis 298
vaccination 298
meningococcal septicaemia 292, 297, 297
Mental Health Act Commission 132
mercury 75
mesophilic bacteria 15
metabolic disorders 47–8, 184
mucous membranes 257, 267
mucus plugs 196
multidrug resistant tuberculosis (MDR-TB) 88, 308, *324
multiple organ dysfunction syndrome (MODS) 212, *324
mumps 21, 292
MMR (measles/mumps/rubella) vaccine 49, 50, 52
mumps virus 21, 296
mupirocin 84, 137
mupirocin-resistant MRSA 137
mutation, bacteria 83
mycelium 23, 24, *324
mycobacteria 277
Mycobacterium spp. 10, 62, 63
Mycobacterium avium intercellulare 277
Mycobacterium kansasii 277
Mycobacterium tuberculosis 10, 62, 305
causing meningitis 296
microwave ovens 239
milk
allergy to 39
pasteurization 307
unpasteurized, Listeria infection 231
Milton 109
minocycline 88
mixed bacterial growth 5
MMR (measles/mumps/rubella) vaccine 49, 52
and autism 50, 52
mixed bacterial growth 5
MMR (measles/mumps/rubella) vaccine 49, 52
and autism 50, 52
Streptococcus pneumoniae causing 140
transmission 298
viral 296
meningococcal meningitis 13, 74, 296, 297, 298
prevention of spread 298
chemoprophylaxis 298
vaccination 298
meningococcal septicaemia 292, 297, 297
Mental Health Act Commission 132
mercury 75
mesophilic bacteria 15
metabolic disorders 47–8, 184
mucous membranes 257, 267
mucus plugs 196
multidrug resistant tuberculosis (MDR-TB) 88, 308, *324
multiple organ dysfunction syndrome (MODS) 212, *324
mumps 21, 292
MMR (measles/mumps/rubella) vaccine 49, 50, 52
mumps virus 21, 296
mupirocin 84, 137
mupirocin-resistant MRSA 137
mutation, bacteria 83
mycelium 23, 24, *324
mycobacteria 277
Mycobacterium spp. 10, 62, 63
Mycobacterium avium intercellulare 277
Mycobacterium kansasii 277
Mycobacterium tuberculosis 10, 62, 305
causing meningitis 296
HIV-associated 277
labelling specimens 71
oxygen and growth requirements 14
reproduction 15
resistance to antibiotics 77
Mycoplasma infections 88
Mycoplasma pneumoniae 26, 192
mycoplasmas 26, 77
mycoses 23–4, 24
myocarditis 202, 302
*324
myofibroblasts 172
N
nails (fingernails) 114
nalidixic acid 77, 91
nasal septum, perforated 267
nasal swabs 69–70
National Patient Safety Agency 114
natural killer (NK) cells 37, 44, *324
near-patient (point of care) testing 59, 59–60
nebulizers 195, 198
Necator spp. 26
necrosis *324
necrotizing fasciitis 177
needle exchange 247
needlestick injuries 255
see also sharps
Neisseria spp. 10, 77
Neisseria catarrhalis 4
Neisseria gonorrhoeae 6, 8, 12, 12–13, 70
causing gonorrhoea 269
increasing ciprofloxacin resistance 75
neutrophil containing 269
oxygen and growth requirements 11, 14
penicillin-resistant 270
Neisseria meningitidis 13, 52
causing meningitis 296, 296, 297–8
oxygen requirements 11
transmission 298
neoaarsphenamine 75, 81
neomycin 87, 137
nephrotoxicity 90
netilmicin 87
neurosyphilis 266
neutropenia 47, 124
neutrophils 34, 35, 36, *324
newborns, Group B streptococci and 139
new variant Creutzfeldt–Jakob disease (vCJD) 300
nitrofurans 91
nitrofurantoin 91
nitrogen 39, 184
nonspecific
(nongonococcal) urethritis 25, 270, *324
normal flora 4, *324
norovirus 21, 234
nosocomial (hospital-acquired) infection contact as route of spread 18
definition *323, *324
risk factors 55–6, 100
see also healthcare-associated infection; infection control
Nosocomial Infection National Surveillance Scheme (NINSS) 133
Nosocomial Infection Surveillance Unit 133
notifiable infections 292, 292
nucleic acid amplification testing 271
nucleosides 281
nutritional status, affecting resistance to infection 184
nuts, allergy to 39
nystatin 93, 275
O
obesity, affecting resistance to infection 48, 184
obligate *324
see also aerobes; anaerobes
occupational health department (OHD) 257
occupational health risks 245, 246–7
odour, in wounds 178–9
oesophageal lesions, HIV-associated 277
ofloxacin 91
operating theatres
conditions affecting wound infection 179–80
design requirements 122
duration of procedures 181
environmental risks 121
infection in 19
infection risk reduction 120–2, 179
precautions 120–2, 179–80
staff precautions and conduct during surgery 121, 179, 181
theatre shoes 254
theatre suite zones 122
ventilation 120, 121, 122, 179, 180
ophthalmia neonatorum 12, 269, 292
opportunist bacteria 4
opportunistic infection *325
opsonins 37, 44, *325
opsonization 36, *325
oral herpes infection, primarily/recurrent 273
orthopaedic patients, operative infection risks 180
orthopaedic surgery 74
oseltamivir 92, 202, 204
osteochondritis 267
otitis media 52, *325
acute (AOM) 199, 200
with effusion (OME) (glue ear) 200
Streptococcus pneumoniae causing 140
otorrhoea 200
ototoxicity 90
overshoes 120
oxazolidones 90
oxygen, requirements of bacteria 11, 11
oxytetracycline 88

P
PABA (para-aminobenzoic acid) 78
pain, throbbing, in surgical wounds 178
palivizumab 92
pandemics 287, *325
Panton–Valentine leukocidin (PVL) 192
papilloma wart virus 290
papovaviruses 21
para-aminobenzoic acid (PABA) 78
paracetamol 199, 200
parainfluenza 21
parainfluenza virus 21, 199
paramyxoviruses 21, 51 parasitic worms 3–4
paratyphoid fevers 89, 224, 292, 301
parenteral *325
parenteral transmission *325
parotitis, infectious 21
pasteurization 106–7
pathogenic activity, bacteria 4
pathogenicity *325
pathogens *325
blood-borne (BBPs) 244
exposure to mutant strains 55
patients, resistance to infection 183–5
PCR (polymerase chain reaction) 65
peginterferon alfa-2a 92
penicillin, discovery of 76
penicillinase enzymes 85
penicillins 85, 86
antipseudomonal 86
beta-lactamase resistant 86
broad spectrum 86
as chemoprophylactics 74
hypersensitivity (allergic) reactions to 79
mechanism/mode of action 78, 78
Neisseria gonorrhoea resistance to 270
range of action 77
Staphylococci resistance to 82
Streptococcus pneumoniae resistance to 192
for syphilis 268
Penicillium notatum 76
Pennington Report 229, 289
peptic ulceration 91
perforated bowel, as complication of typhoid fever 302
pericarditis *325
periostitis 267
peripheral neuropathy 202
peritonitis 269, *325
pertussis (whooping cough) 201
phagocytes *325
phags, see bacteriophages
phagocytosis 13, 36–7, 36, *325
Pharaoh’s ants 19
pharyngitis 138
phenolics 108, 111
phenoxybenzylpenicillin 86
phlebitis 211, 212, *325
non-bacterial 216
reducing the incidence of 213–14, 218
phlebotomy cuffs 254
phototrophs 14
physiotherapy, hospital-acquired pneumonia 196, 197
picornaviruses 21, 198
pinworm 26
piperacillin, with beta-lactamase inhibitor 86
piperazine 28
pipi 8, 9, 12
pivmecillinam hydrochloride 86
Plasmodium 12, 19, 25, 293
plague 4, 291, 292
plasma assays 90
plasma cells *325
plasma protein levels, altered 267
plasmid-mediated antibiotic resistance 17
plasmids 16, *325
plasmid transfer 83
Plasmodium 12, 19, 25, 293
chloroquine-resistant life cycle 293, 294
Plasmodium falciparum 293, 293, 296
Plasmodium malariae 293, 296
Plasmodium ovale 293, 296
Plasmodium vivax 293, 296
pleomorphism *325
pneumococcal disease 49
vaccination 52–3, 192
vaccine 49, 50
Pneumocystis carinii 90

small intestine 32
vagina 33

INDEX 343
Pneumocystis jiroveci 90, 277, 283
pneumonia 6, 191–2, *325
community-acquired 192
as complication of typhoid fever 302
decontamination of equipment 198
enterococci causing 140
following influenza 202–3
fulminant 304
Group B streptococci causing 139
HIV-associated 277
hospital-acquired 192–8
prevention 196–8
sources of pathogens 194–6
prevention in hospital-acquired pneumonia 196–8
in ventilated patients 197
Streptococcus pneumoniae
causing 140
vaccination 192
ventilator-assisted (VAP) 194
podophyllin 271, 272
podophyllotoxin 271, 272
point-of-care (near-patient) testing 59, 59–60
poliomyelitis 21, 292
vaccine 49, 52
poliovirus 12, 21
polynucleotides 93
polymerase chain reaction (PCR) 65
polymyxins 91
polymorphonuclear cells 34
polymorphonuclear leucocytes 35, *325
Pontiac fever 304
pork roundworms 26
pork tapeworms 26
povidone iodine 110, 159, 217
poxvirus 21
PPE, *see* personal protective equipment

pregnancy
Group B streptococci and 139
hepatitis B infection 249
Listeria and 230
in staff 125
toxoplasmosis 299, 300
urinary infections 33
prevalence 290, *325
primarque 296
primary (first) intention 169–72, *325
primary response *325
prion proteins 300
prions 4, 20, *325
probeneccid 270
procaine benzylpenicillin, for syphilis 268
proguanil 295, 296
prokaryotic cell 7–8, *326
proliferative phase, of wound healing 168, 169–72, 170, 171
prophylaxis *326
antibiotics 181
see also
chemoprophylaxis
prostaglandins 40
prostate, transurethral resection of (TURP) 160
prostatitis 269, 270
protease inhibitors 281
protective clothing 119–20, 253–4
see also aprons; gloves; personal protective equipment (PPE)
protective isolation 124–5, *326
see also isolation proteins, complement proteins *321
Proteus 4, 4, 6, 8, 10
causing encrustation 154
causing urinary infection 153
colonization 142
oxygen requirements 11
protozoa 24–5, *326
causing enteric infection 235–6
HIV-associated 277
pathogenic 25, 25
protozoal meningitis 296
pseudomembranous colitis 80, 90, 91, 138, *326
Pseudomonas 4, 6
causing cross-infection 81
colonization 142
growth requirements 14
and superinfection 80
Pseudomonas aeruginosa 64, 83
psychological stress, affecting immunity 48
psychrophilic bacteria 15
Public Health (Control of Disease) Act 1984 292
Public Health (Infectious Diseases) Regulations 1988 292
Public Health Laboratory Service 133, 291
public health measures, human immunodeficiency virus (HIV) 247
puerperal fever 138
puerperal sepsis *326
pulmonary infection, HIV-associated 277
pulmonary lesions, HIV-associated 277
pus *326
pyelonephritis 153
acute *326
pyogenic (pus-forming) infections 135
pyrazinamide 88
pyrexia 39–40, 41
pyrimethamine, for toxoplasmosis 300
pyrogens 40

Q
quaternary ammonium compounds 110
quinine 296
quinolones 78, 79, 91, 305
quinupristin 91, 137
R
rabies 21, 310–11
diagnosis 311
notifiable disease 292
prevention 310–11
prophylaxis 311
treatment 311
rabies virus 21
radiation, as sterilization method 115
radiography, tuberculosis prevention 307
radiotherapy, affecting immunity 47
rapid plasma reagin (RPR) test 268
rash 266
maculopapular 266
recontamination 104
rectal swabs 68
relapsing fever, notifiable disease 292
renal impairment, gentamicin and 82
reoviruses 21, 199
reservoirs of infection 20, *326
respiratory infections 21, 24, 190–207
further reading and information sources 207
hospital-acquired 190
importance of 190
self-assessment questions/answers 204–5, 318
respiratory syncytial virus (RSV) 21, 199, 201
treatment 92
respiratory tract 191
innate immunity 32
upper, normal human flora 4
respiratory tract infections 21
lower (LRTIs) 190–8
upper (URTIs) 198–205
Resuscitation Council UK 39
retrovirus 21
reverse transcriptase 23, 245, 277, *326
reverse transcriptase-PCR (RT-PCR) 65
Reye’s syndrome 199
rabdovirus 21
rhagades 267
rheumatic fever 76, 139
rheumatoid arthritis 76
rhinitis 267
rhinoviruses 21, 47, 198, 199
discovery of 77
in MRSA treatment 137
rigors, in pyrexia 39
rings, wearing of 114
ringworm 24
risk assessment *326
ritonavir 92
RNA viruses 20, 21
rotaviruses 18, 21, 235
vaccines 49
roundworms 26, 27
RT-PCR (reverse transcriptase-PCR) 65
rubella (German measles) 21, 51, 292
MMR (measles/mumps/rubella) vaccine 49, 50, 52
rubella virus 12, 21
S
Salmonella enterica 41, 224, 301
Salmonella enteritidis 224
Salmonella typhimurium 224
salmonellosis, nosocomial 226
salpingitis 270
saprophytes 4, 23, *326
SARS (severe acute respiratory syndrome) *326
Scrub Lives: Reducing Infection, Delivering Clean and Safe Care (DH publication) 99–100
scarlet fever 138–9, 292
scarring 171, 267
Schistosoma haematobium 26
cracic 300
screening *326
secondary response *326
Semmellweiss, Ignaz 18
sepsis, see wound infection
septicaemia 52, 87, 211, *326
causes 137, 230
enterococci causing 140
meningococcal 292, 297
in newborns 139
seroconversion *326
serological tests
bacteria 64
viruses 65
serology *326
serotyping *326
Serratia marcescens 64
serum *326
severe acute respiratory syndrome (SARS) 199, 308–9, *326
sexual health 263–4, 263
sexual health clinics concordance with treatment 264
quarterly returns 262
role of 263–4
screening 265
sexually acquired infections, see sexually transmitted infections
sexually transmitted infections (STIs) 12, 262–85
further reading and information sources 285
incidence 262–2
reports to Department of Health 292
self-assessment questions/answers 283, 318
see also individual infections
sharps *326
alternatives to 255
disposal 255–6
documentation of injuries 256–7
handling 255
injuries 244, 256–7
see also needlestick injuries
shellfish, allergy to 39
Shigella 6, 12, 19
biochemical tests 64
causing dysentery 227, 228
causing food infection 223
HIV-associated 277
oxygen requirements 11
Shigella boydii 228
Shigella dysenteriae 228
Shigella flexneri 228
Shigella sonnei 13, 227, 228
shingles 12, 21, 23, 277
ships, control of vermin in 291
shivering 41
shock, anaphylactic 79, *319
shoes
overshoes 120
theatre shoes 254
sickle-cell disease 74
silver sulfadiazine 76
single-use devices 114, 115
SIRS (systemic inflammatory response syndrome) *327
skin
intact, as body defence 32
normal human flora 4
pH 32
skin cleansing, intravascular cannulation 217
skin hygiene, preoperative 181
skin lesions 266
sleeping sickness 25
slough *326
small intestine, pH 32
smallpox 21, 292
eradication of 48, 55, 77, 291
vaccination 48, 55
smallpox virus 21
smoking
reducing before surgery 196
and the respiratory system 32, 191
snail-track ulcers 266
Snow, Dr John 303
soap, in hand
decontamination 112
social conditions, improvements in 76–7
social factors, in epidemics 54
sodium dichloroisocyanurate (NaDDC) 258
sodium fusidate 77, 137
soil 77
sore throats 6, 21
source of infection *326
species *326
specimens
bacterial cultures 63–4
biohazard labels 71
blood cultures 70
cervical swabs 70
collecting 59, 60, 66–71
CSF (cerebrospinal fluid) 70
examination time limit/delay 67, 70
cerebrospinal fluid 70
urine 67
eye swabs 70
from wounds 67–8
good practice techniques 66
initial examination 60
macroscopic examination 60
microscopic examination 60–2
nasal/pernasal swabs 69–70, 69
rectal swabs 68
sputum 68
stools 68
throat swabs 68, 69
transporting 71, 71
urine 67
vaginal swabs 70
viral cultures 65
see also laboratory services
spectinomycin, for gonorrhoea 270
spillage
antibiotics 84
blood and body fluids 258
spirochaetes 7, 7, 62, 265, *326
spiromycin, for toxoplasmosis 300
splashes, eye protection 254
spleen, HIV-associated lesions 277
splenectomy 53, 74
spore formation, bacteria 10
spores 9, *326
resistance to disinfection 107, 110, 114
sputum, specimens 68
staff pregnant, and contact with immunosuppressed patients 125 training in disinfection policies 111 uniforms 118 Stafford District General Hospital, Legionnaires’ disease outbreak 289, 304 standard precautions/principles 253–7 blood contamination of conjunctivae and mucous membranes 257 protective clothing 253–4 sharps 255–7 spillage of blood and body fluids 258 standard (universal) precautions/principles *327 Stanley Royd Hospital, Salmonella outbreak 226, 289 staphylococci 6, 7, 10, 13 causing abscesses 177 coagulase-negative (CNSs) 137–8 conjugation 83 HCAI 135–8 nosocomial infection 82 penicillin-resistant 82, 85 resistance to antibiotics 82 and superinfection 80 surgical wound infection 175, 184 transduction 83 Staphylococcus aureus 6, 13, 17, 76, 203 causing food-borne intoxication 223, 231 causing urinary infection 153 community-acquired pneumonia 192 in HCAI 135–7 hospital-acquired pneumonia 192 intravascular catheter-associated infection 209, 211 producing Panton–Valentine leukocidin 192 see also meticillin-resistant Staphylococcus aureus Staphylococcus epidermidis 4, 6, 72, 137 causing urinary infection 153 in HCAI 135, 137 intravascular devices 211, 217 sterilization 114–16 definition 114, *327 methods 115–16, 115 single-use devices 114, 115 situations necessitating 114 Stevens–Johnson syndrome 90, *327 sticky eyes, see ophthalmia neonatorum sticky mats 120 stomach, colonization of 194 stools rice water stools 303 specimens 68 strain *327 streptococci 7, 10, 13, 82 conjugation 83 and dental treatment 74 group A beta-haemolytic 138–9 group B 139, 139, 296 HCAI 138–40 Lancefield groups 138 pneumococcus 140 surgical wound infection 175 viridans group 140 Streptococcus faecalis 4 Streptococcus pneumoniae 6, 52, 140, 192 causing meningitis 296 penicillin-resistant 192 Streptococcus pyogenes 64, 83, 138–9 Streptococcus viridans 4 streptomycin 77, 78–9, 87 stress, affecting immunity 48 stridor 201 Strongyloides stercoralis 26 Stuart’s medium 70 Study of the Efficacy of Nosocomial Infection Control project (US) 133 subclinical infection *327 suctioning, tracheobronchial, as source of pathogens 195, 195–6 sulfadiazine 76, 300 sulfamethoxazole 90 sulfapyridine 76 sulfasalazine 76 sulphanilamide 76 sulphonamides 76 mechanism/mode of action 78, 78 range of action 77 side-effects 76 and trimethoprim 90 superinfection 80, 87, *327 surgery enhancing patients’ resistance to infection 183–5 staff precautions and conduct during 121 surgical masks 119–20 Surgical Site Infection Surveillance Service (SSISS) 133 surgical technique, poor 182 surgical wound infection 174–85 auditing 176 bacteria associated with 175 containing bacteria dose 179–83 factors associated with 179–85 incidence 175
infection rates 175
prevalence 175
wound site 182
see also wound infection;
wound repair
surveillance *327
suturing, tight 182
syphilis 7, 75, 265–8
congenital (prenatal) 266, 266–7
diagnosis 267
incidence 265
incubation period 265
serological tests 268
stages 265–6
theories of origin 265
transmission 265

treatment 268
systemic inflammatory response syndrome (SIRS) 211, 212

T

tabards 119
tabes dorsalis 266, *327

Taenia saginata 26

Taenia solium 26
tapeworms 26, 27
T cells, see T lymphocytes
tea tree oil, for recurrent genital herpes 274
tech, Hutchinson’s incisors 267
teicoplanin 17, 90, 137
telithromycin 88
temperature
for bacterial growth 15
see also body temperature
Terence Higgins Trust 247
tetanus (lockjaw) 10, 13, 14
notifiable disease 292
vaccine 49, 52
tetracyclines 87–8, 88
for cholera 304
discovery of 77
mechanism/mode of action 78, 78–9, 78
range of action 77
safer use of 88
superinfection and 80
for syphilis 268

theatre, see operating theatres
thermophilic bacteria 15
thermoregulation 40–1,
40, 41

threads and 26–8, 26, 28
throat, sore throats 6, 21
throat swabs 68, 69

vaginal 23, 33
see also candidiasis
ticarcillin, with clavulanic acid 85, 86
tigecycline 88, 137
Timetin 85, 86
toxocarasis 26–8, 26

toxoplasmosis 298–300
diagnosis 300
screening 300
transmission 299, 299
treatment 300
tracheobronchial suction, as source of pathogens 195, 195–6
tracheostomy tubes, as source of pathogens 194–5

trachoma 26

trachoma inclusion conjunctivitis (TRIC) 26
transduction 16, 17, 83, *327

transformation 16, 17, 83, *327
transmissible spongiform encephalopathies (TSEs) 300
transurethral resection of prostate (TURP) 160
travel 55
and food risk 223
malaria 294
tuberculosis 305–6
viral haemorrhagic fevers 309
treponemal antigen-based enzyme immunoassay (EIA) 268
Treponema pallidum 7, 12, 75, 266
causing syphilis 265
oxygen and growth requirements 11, 14
Treponema pallidum haemagglutination assay (TPHA) 268
Treponema pallidum particle agglutination assay (TPPA) 268
treponemes 267
triazoles 93
tribavirin 92
Trichinella spiralis 26
Trichomonas 25
Trichomonas vaginalis 12, 25, 70, 275
trichomoniasis 275–6, 276
Trichophyton interdigitale 23, 24
trimethoprim 78, 78, 90, 225, 304
Trypanosoma brucei gambiense 25
Trypanosoma rhodesiense 25
trypanosomiasis 25
tuberculosis 10, 305–8
bovine 307
diagnosis 307
diagnosis and treatment 15
extensively drug-resistant (XDR-TB) 88, 308, *322

genetic component 47
INDEX

349

high-risk groups 305–6
incidence 305
Mantoux skin testing 307
multidrug resistant (MDR-TB) 88, 308, *324
notifiable disease 292
post-primary (secondary) infection 306–7
prevention 307
primary infection 306
specialist nurses 307
transmission 306
treatment 89
vaccination/immunization 49, 307
vaccines 49

U
ulcerative colitis 76
ulcers 266
see also chancres; gummata
ultraviolet rays, bacteria and 15
undernourishment, affecting resistance to infection 184
uniforms 118
universal precautions *327
see also standard precautions/principles
upper respiratory tract, normal human flora 4
upper respiratory tract infections (URTIs) 198–205
in babies and children 199–200
handwashing and 18
urachitis gonorrhoea and 269
non-specific (nongonococcal) 25, 270, *324
urinary catheterization checklist 156–7
complications 152
intermittent catheterization 153
meatal care 159
patient/resident education 157, 157
recommendations for clinical practice 156–60
reducing the problems of 156, 156–7
self-catheterization 152
see also catheter-associated urinary tract infection (CAUTI)
urinary catheters alternatives 153
auditing use of 160, 160–1
balloon size 158
blockage 154, 154
catheter gauge 158
catheter length 158
catheter material 157–8
drainage systems, see urinary drainage systems
crustation 154, 158, *322
healthcare-associated infection (HCAI) 151, 152, 160
insertion 158–9
leakage 155
pain and discomfort from 155
time in situ 152
urine samples 67
use of 151–2
see also urinary infections
urinary drainage systems additives 160
bag changes 160
bag choice 159
closed system 155–6, 155, 156
condom drainage systems 153
emptying 159
irrigation 159
management and choice of 159–60
urinary infections 6, 90, 151–64
further reading and information sources 164
healthcare-associated 151, 152
hospital-acquired 160
organisms responsible for 153
prevalence 160
self-assessment questions/answers 161, 318
see also urinary catheters
urinary tract, innate immunity 33
urinary tract infection (UTI)
catheter-associated (CAUTI) 151
catheterization 152–5
enterococci causing 140
Group B streptococci and 139
in hospital 132
nitrofurans for 91
organisms responsible for 4
urine, specimens 67
urogenital tract, infection via 12

V
vaccination
contraindications 53
definition 49
in developing countries 55
v. immunization 49
rabies 301–11
see also immunization; and individual infectious diseases
vaccines *327
antigenic drift 55
attenuation *319
availability in UK 48–9
combined 52
conjugate 49
dates of introduction 50
killed 49
live 49
live attenuated *324
new, development of 55
storage of 54
subunit 49
toxoids 49
types 49
see also individual infectious diseases
vagina
lactobacilli 33
normal human flora 4
pH 33
vaginal infection 25
vaginal swabs 70
vaginal thrush 23, 33
vaginosis, bacterial 276
treatment 276
valaciclovir, for genital herpes 273, 274
vancomycin 80, 90
mechanism/mode of action 78, 78
in MRSA treatment 137
side-effects 90
in treatment of enterococci 140
vancomycin-resistant intermediate
Staphylococcus aureus (VISA) 136, 137
vancomycin-resistant enterococci (VRE) 17, 82, 90, 140
vancomycin-resistant Enterococcus faecium 91
vancomycin-resistant MRSA 137
varicella (chickenpox) 12, 19, 21, 49
varicella zoster virus (VZV) 21, 296
treatment 92
variola, see smallpox
vascularization 182
vasoconstriction 40, 41
vasodilatation 40, 41
Venereal Disease Reference Laboratory 264
Venereal Disease Regulations 1916 263
Venereal Disease Research Laboratory (VDRL) test 268
ventilated patients, infection risks 193, 194
prevention of pneumonia 197
ventilation, in operating theatres 120, 121, 122, 179, 180
ventilator-assisted pneumonia (VAP) 194
ventilator circuits, contaminated 195
ventilators 198
vero cytotoxin 229
vertical transmission, infection by 12, 249, 281–2
Vibrio cholerae 6, 15, 303
vibrios 6, 7, 10, 12, *327
resistance to tetracycline 304
viral haemorrhagic fevers 309–10
diagnosis 310
notifiable disease 292
prevention 309–10
transmission 309
viral hepatitis 292
viral meningitis 296, 296
viridans group of streptococci 140
virulence 4, 12–13, 106, *327
viruses 20–3, *327
antiviral drugs 92, 92
blood-borne (BBVs) 244
reducing the risk of exposure to 253–8
causing enteric infections 233–5
cultures 65
DNA viruses 20, 21
electron microscopy 65
enveloped 20
HIV-associated 277
identifying infections 65
life cycle 22–3, 22
malignancy 23
naked 20
RNA viruses 20, 21
serological tests 65
structure 20
see also individual viruses
VISA (vancomycin-intermediate Staphylococcus aureus) 136, 137
VRE (vancomycin-resistant enterococci) 17, 82, 90, 140
vulvovaginitis 269
gonococcal 269
W
warts 21
washing machines 107
Wasserman reaction (WR) 268
waste, clinical 117, *321
waste disposal 116–17
duty of care 117
legislation 117
water
for bacterial growth 14
contaminated 12, 19
water supplies
cholera and 303, 303
Legionnaires’ disease 304–5
Weil’s disease 7
West Nile fever 21
white blood cells *327
see also leucocytes
WHO, see World Health Organization
whooping cough, see pertussis
Widal reaction 302
women, and HIV infection 281–2, 282
breastfeeding 282
workwear 118
World Health Organization international recommendations 291
malaria campaign 295
worms
parasitic 3–4, 68
see also helminths
wound drainage, closed suction 183
wound dressings
aseptic (non-touch) technique 185–6
functions 165
‘ideal’ 165, 165
wound healing
angiogenesis 170, *319
collagen synthesis 169–70
delayed 178, 182
epithelialization 171–2, *322
growth factors 168
inflammatory response 169, 173, 176
maturation phase 168, 172
moist v. dry environment 166
moist environment 165
primary (first) intention 169–72, *325
process (hour-by-hour view) 170–1
proliferative phase 168, 169–72, 170, 171
stages 168–74
wound infections 165–89
enterococci causing 140
extent of contamination 167–8
identifying 176–9
patient’s resistance to 183–5
pockets of 178
postoperative, factors influencing development of 183–5
self-assessment questions/answers 186, 318
see also surgical wound infection
wound repair 173–4, 174
delayed primary closure 173, 174
further reading and information sources 188–9
general health and 166, 167
granulation 173
primary closure 173, 174
secondary intention 173–4, 174
surgical approaches to 173–4
wound bed preparation 168, 169
see also wound healing wounds
classifications 167–8, 168, 175
contamination 167–8, 168
covered v. exposed 166
dehiscence 179
discharge from , abnormal 177, 177–8
discoloration 178
drainage 183
exudate 177, 177–8
foreign bodies in 182–3
friable granulation tissue 178
infection pockets 178
odour 178–9
specimens from 67–8
throbbing pain 178
tissue loss 167
wound care, historical aspects 167

INDEX

wound infections 165–89
enterococci causing 140
extent of contamination 167–8
identifying 176–9
patient’s resistance to 183–5
pockets of 178
postoperative, factors influencing development of 183–5
self-assessment questions/answers 186, 318
see also surgical wound infection
wound repair 173–4, 174
delayed primary closure 173, 174
further reading and information sources 188–9
general health and 166, 167
granulation 173
primary closure 173, 174
secondary intention 173–4, 174
surgical approaches to 173–4
wound bed preparation 168, 169
see also wound healing wounds
classifications 167–8, 168, 175
contamination 167–8, 168
covered v. exposed 166
dehiscence 179
discharge from , abnormal 177, 177–8
discoloration 178
drainage 183
exudate 177, 177–8
foreign bodies in 182–3
friable granulation tissue 178
infection pockets 178
odour 178–9
specimens from 67–8
throbbing pain 178
tissue loss 167
wound care, historical aspects 167
XDR-TB (extensively drug-resistant tuberculosis) 88, 308, *322
X-linked disorders 47
yaws 265
yeasts 23, 80, *327
yellow fever 21, 291, 292
vaccination 49
Yersinia 10
Yersinia pestis 4
young people, routine immunization schedule 50, 50
zanamivir 92, 202, 204
zidovudine (AZT; azidothymidine) 92, 281
Ziehl–Neelsen (acid-fast) staining technique 10, 62, 62, *327
zoonoses *327