Question: Outline the difficulties involved in the problem of induction. What bearing do these have on the practice and claims of science?

1. Difficulties involved:

- a) The **problem** how to establish the truth of universal empirical generalisations
 - (i) Induction involves moving from singular observation statements to universal generalisations
- but (ii) a statement referring to an infinite set cannot be entailed in a finite set of singular observation statements
- therefore (iii) since evidence = always finite, belief in truth of universal statement can never be justified

b) Solution:

(i) Principle of Induction

-- inserted into invalid inductive argument to turn it into a valid deductive argument i.e.

All observed swans are white All unobserved cases resemble observed cases (Principle of induction)

Therefore All swans are white S is a swan
Therefore S is white

(ii) But – Hume's 'vicious circle':

I. To know that inductive methods of argument = correct we need to know that the principle = true

But II. we can only know this = true once we can show we can rely on induction

Therefore III. no reason for thinking inductive arguments = correct

2. Bearing on the practice and claims of science:

- a) Formulating hypotheses and theories:
 - (i) **Narrow inductivists** conception of scientific enquiry Stages:
 - I. Observe & record facts without preconceptions
 -- without selection
 - II. Analyse and classify facts without hypotheses
 - III. Inductive derivation of generalisations
 - IV. Testing

But (ii) **Untenable**:

- I. Collection of *all* the facts = impossible
 - -- collection of *relevant* facts need hypothesis to give enquiry direction
- II. Facts can be analysed and classified in many different ways
 - -- therefore we need hypothesis about how phenomena are connected – otherwise analysis & classification = blind
- III. Hypotheses not just introduced in 3rd stage by inductive inference there is no such general mechanical inductive procedure from facts to hypothesis via inductive inference
 - Re. Einstein: 'A theory can be proved by experiment; but no path leads from experiment to the birth of a theory.'

Re. Watson and Crick

Therefore (iii) **Non-rational explanations** of scientific practice:

- I. Popper 'conjectures'
- II. William Whewell 'Happy guesses
- III. Medawar 'Intuition and imagination'

b) Testing theories:

- (i) **Problem** = not enough evidence to conclusively confirm a universal empirical generalisation only finite evidence for an infinite claim
- (ii) Answer **Popper falsification**:
 - I. Asymmetry between falsification and confirmation no amount of confirming evidence = conclusive, whereas one falsification is
 - II. Bold theories with more claims inspire more confidence because they are forced to pass more tests
 - III. Pseudo-scientists seek to confirm and immunize their theories against falsification

Re. Bacon: 'the force of the negative instance is greater.'

(iii) But:

- I. Not rational to abandon a theory that has been successful in other areas e.g. Neptune and Newton
- II. Fundamental theories about the ultimate determinants of the world = by their very nature unfalsifiable, because they don't forbid anything without other theories.
- III. If experiment results in falsification you cannot be sure where the problem lies –

background theories theory initial conditions experimental design and equipment observations

Failed predictions cannot point one way or the other, but confirmation confirms everything, including the theory.

- (iv) Therefore (**Kuhn**) only reliable evidence = confirm:
 - I. Normal scientists seeks to confirm paradigm by concentrating on the questions it defines as relevant and which it guarantees to have a solution
 - II. Rational to save theories with auxiliary hypotheses
 - III. Only accumulated failure of a theory = decisive