Solutions to Miscellaneous Exercise 7

1.

![Diagram](image)

The volume = 100 m3. So

\[2xy = 100 \]

\[y = \frac{100}{2x} = \frac{50}{x} \quad (*) \]

The surface area, \(A\), consists of the bottom part, 2 sides, the front and the back. Thus

\[A = 2x + (2y + 2y) + (xy + xy) = 2x + 4y + 2xy \]

\[\equiv 2x + 4\left(\frac{50}{x} \right) + 2x\left(\frac{50}{x} \right) \]

\[A = 2x + \frac{200}{x} + 100 = 2x + 200x^{-1} + 100 \]

For stationary points:

\[\frac{dA}{dx} = 2 - 200x^{-2} = 0 \]

\[2 = 200x^{-2} = \frac{200}{x^2} \]

\[x^2 = \frac{200}{2} = 100 \]

How can we find \(x\)?

Take the square root of both sides: \(x = \sqrt{100} = +10, -10\)

Since \(x\) is length it cannot be \(-10\). So \(x = 10\) m.

To check that \(x = 10\) m gives minimum surface area we have to differentiate again:

\[\frac{d^2A}{dx^2} = 400x^{-3} = \frac{400}{x^3} > 0 \] (because \(x > 0\))

By (7.3), \(x = 10\) m gives minimum surface area. What is the value of \(y\)?

We can find \(y\) from (*) by substituting \(x = 10\): \(y = 50/10 = 5\) m.

Thus \(x = 10\) m, \(y = 5\) m gives minimum surface area.

2. Let \(x\) and \(y\) represent the dimensions as shown below:

![Diagram](image)

The perimeter of the cross section is \(4x\) so

\[4x + y = 2 \]

\[y = 2 - 4x \quad (*) \]

The volume, \(v\), of the parcel is given by

\[v = x^2 y = x^2 (2 - 4x) = 2x^2 - 4x^3 \]

(7.3) \(A' = 0, \ A'' > 0 \) minimum
To find stationary points
\[
\frac{dv}{dx} = 4x - 12x^2 = 0, \quad 4x(1 - 3x) = 0 \text{ which gives } x = 0, \quad x = 1/3
\]
x = 0 m is not a feasible solution, why not?
If x = 0 m then we will not have a parcel. For x = 1/3 m, we can use the second derivative test:
\[
\frac{d^2v}{dx^2} = 4 - 24x
\]
Substituting \(x = \frac{1}{3} \) gives \(\frac{d^2v}{dx^2} = 4 - 8 = -4 < 0 \). By (7.2), \(x = \frac{1}{3} \) m gives maximum volume. To find \(y \) we substitute \(x = 1/3 \) into (*):
\[
y = 2 - \frac{4}{3} = \frac{2}{3}
\]
Hence \(x = 1/3 \) m, \(y = 2/3 \) m gives maximum volume.

3. Similar to solution 2. Let \(L \) represent the sum of length and girth.
\[
4x + y = L
\]
\[
y = L - 4x \quad \text{(†)}
\]
The volume \(v \) is given by
\[
v = x^2y = x^2(L - 4x)
\]
\[
v = Lx^2 - 4x^3
\]
\[
\frac{dv}{dx} = 2Lx - 12x^2 = 0, \quad 2x(L - 6x) = 0 \text{ gives } x = 0, \quad x = L/6
\]
As before \(x = L/6 \). Differentiating again:
\[
\frac{d^2v}{dx^2} = 2L - 24x
\]
At \(x = \frac{L}{6} \), \(\frac{d^2v}{dx^2} = 2L - 24\left(\frac{L}{6}\right) = 2L - 4L = -2L < 0 \) [Negative]
By (7.2), \(x = L/6 \) gives maximum volume. Substituting \(x = L/6 \) into (†):
\[
y = L - \frac{4L}{6} = \frac{2L}{6} = 2x \quad \text{. Hence the length is twice the side of the square.}
\]

4. We have
\[
w = -36x^2 + 50x
\]
\[
\frac{dw}{dx} = -72x + 50 = 0, \quad 72x = 50 \text{ gives } x = \frac{50}{72} = \frac{25}{36} \text{ m}
\]
\[
\frac{d^2w}{dx^2} = -72 < 0 \quad \text{[Negative]}
\]
By (7.2) at \(x = 25/36 \) m the loading is maximum.

5.
\[
y = \frac{1}{12 \times 10^2}\left(x^4 - 14x^3 + 36x^2\right) \quad \text{(*)}
\]
\[
\frac{dy}{dx} = \frac{1}{12 \times 10^3}\left(4x^3 - 42x^2 + 72x\right)
\]
\[
y' = 0, \quad y'' < 0 \text{ maximum}
\]
For stationary points we have
\[
\frac{2x}{12 \times 10^3} (2x^2 - 21x + 36) = 0
\]
\[
x = 0 \quad \text{or} \quad 2x^2 - 21x + 36 = 0
\]
We solve the quadratic by putting \(a = 2\), \(b = -21\) and \(c = 36\) into (1.16), which gives:
\[
x = \frac{21 \pm \sqrt{(21)^2 - (4 \times 2 \times 36)}}{4} = 2.16 \text{ m or } 8.34 \text{ m}
\]
\(x\) cannot be 8.34 m because the beam is only 3m long so \(x = 2.16 \text{ m}\). To check the nature of the stationary point we need to differentiate again:
\[
\frac{dy}{dx} = \frac{1}{12 \times 10^3} (4x^3 - 42x^2 + 72x)
\]
\[
\frac{d^2y}{dx^2} = \frac{1}{12 \times 10^3} (12x^2 - 84x + 72) = \frac{12}{12 \times 10^3} (x^2 - 7x + 6) = (x^2 - 7x + 6) \times 10^{-3}
\]
At \(x = 2.16\), \(\frac{d^2y}{dx^2} = (2.16^2 - (7 \times 2.16) + 6) \times 10^{-3} = -4.45 \times 10^{-3} < 0\) [Negative]

By (7.2), \(x = 2.16 \text{ m}\) gives maximum deflection. To find the maximum deflection we substitute \(x = 2.16\) into (*):
\[
y = \frac{1}{12 \times 10^3} \left[2.16^4 - (14 \times 2.16^3) + (36 \times 2.16^2) \right] = 4.05 \times 10^{-3} \text{ m}
\]

6. We have \(x = 2.5 \sin(2\theta)\). For stationary points:
\[
\frac{dx}{d\theta} = 5 \cos(2\theta) = 0
\]
\[
\cos(2\theta) = 0, \quad 2\theta = \cos^{-1}(0) = \frac{\pi}{2} \quad \text{gives} \quad \theta = \frac{\pi}{4}
\]
Using the second derivative test:
\[
\frac{d^2x}{d\theta^2} = -10 \sin(2\theta) \quad \left[\text{By} \quad \frac{d}{d\theta} \left[\cos(k\theta) \right] = -k \sin(k\theta) \right]
\]
At \(\theta = \frac{\pi}{4}\), \(\frac{d^2x}{d\theta^2} = -10 \sin\left(2 \times \frac{\pi}{4}\right) = -10 < 0\).

By (7.2), when \(\theta = \pi/4\) the horizontal distance \(x\) is a maximum.

7. Similar to solution 6. We can rewrite \(x\) as:
\[
x = \frac{u^2}{2 \times 25} \left[2 \sin(\theta) \cos(\theta) \right] = \frac{u^2}{50} \sin(2\theta)
\]
Differentiating with respect to \(\theta\) gives:
\[
\frac{dx}{d\theta} = \frac{u^2}{50} 2 \cos(2\theta) = \frac{u^2}{25} \cos(2\theta)
\]
By solution 6 we have a stationary point at \(\theta = \pi/4\).

\[
(1.16) \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
\[
(4.53) \quad 2 \sin(x) \cos(x) = \sin(2x)
\]
\[
(7.2) \quad y' = 0, \quad y'' < 0 \quad \text{maximum}
\]
To show that $\theta = \pi/4$ gives maximum:

$$\frac{dx}{d\theta} = \frac{u^2}{25}\cos(2\theta)$$

$$\frac{d^2x}{d\theta^2} = \frac{u^2}{25}[-2\sin(2\theta)]$$

By $\frac{d}{d\theta}(\cos(k\theta)) = -k\sin(k\theta)$

At $\theta = \pi/4$, $\frac{d^2x}{d\theta^2} = -\frac{2u^2}{25}\sin\left(\frac{2\pi}{4}\right) = -\frac{2u^2}{25} < 0$ [Negative]

By (7.2), $\theta = \pi/4$ gives maximum x.

8. We have $s = 2 - te^{-t}$. The velocity, v, is found by differentiating:

$$v = \frac{ds}{dt} = 0 - \left[te^{-t}(1) - (e^{-t})(1-t)\right]$$

$$v = (t-1)e^{-t}$$

We need to differentiate v with respect to t to find the acceleration, a.

$$a = \frac{dv}{dt} = -e^{-t}(t-1) + e^{-t}(1)$$

$$= e^{-t}[-t+1+1]$$

$$= e^{-t}(2-t)$$

The graph $v = e^{-t}(t-1)$ cuts the v axis at $t = 0$, therefore substituting $t = 0$

$$v = e^0(0-1) = -e^0 = -1$$

Also $v = e^{-t}(t-1)$ cuts the t axis at $v = 0$,

$$e^{-t}(t-1) = 0, \ t-1 = 0 \ gives \ t = 1$$

The graph v goes through $(0, -1)$ and $(1, 0)$. What happens to $v = e^{-t}(t-1)$ as $t \to \infty$? As $t \to \infty$, $v \to 0$ because e^{-t} is decaying as t increases.

What else can we discover about the graph?

Any stationary points and their nature.

$$v = e^{-t}(t-1)$$

$$\frac{dv}{dt} = a = (2-t)e^{-t} = 0 \ gives \ t = 2$$

There is a stationary point at $t = 2$. To identify the nature of stationary point we differentiate again

$$\frac{d^2v}{dt^2} = (-1)e^{-t} + (2-t)(-e^{-t}) = (t-3)e^{-t}$$

At $t = 2$, $\frac{d^2v}{dt^2} = (2-3)e^{-2} = -e^{-2} < 0$. By (7.2), at $t = 2$, v has a maximum. The maximum value $= e^{-2}(2-1) = e^{-2}$. Also $\frac{d^2v}{dt^2} = 0$ when $t = 3$. Hence there is a general point of inflexion at $t = 3$ when $v = 2e^{-3}$. We have

(6.31) $(uv)' = u'v + uv'$
9. From chapter 5 we know the exponential function is never zero, so \(v = 4e^{-50t^2} \neq 0 \) for any values of \(t \). However as \(t \to \pm \infty \), \(v \to 0 \) because the exponential function, \(e^{-50t^2} \), decays as \(t \to \pm \infty \). We can find the stationary points: \(v = 4e^{-50t^2} \)

\[
\frac{dv}{dt} = 4e^{-50t^2}(-100t) = -400te^{-50t^2} = 0 \quad \text{gives} \quad t = 0
\]

Substituting \(t = 0 \), \(v = 4e^0 = 4 \). Hence \((0,4)\) is the stationary point of \(v = 4e^{-50t^2} \). What about the nature of the stationary point?

We can use first derivative test: \(\frac{dv}{dt} = -400te^{-50t^2} \)

If \(t < 0 \) then \(\frac{dv}{dt} > 0 \) because the exponential part \(e^{-50t^2} \) is positive and we have \(-400\) multiplied by another negative, \(t \), which gives a positive answer.

If \(t > 0 \) then \(\frac{dv}{dt} < 0 \). By (7.7) the stationary point \((0,4)\) is a maximum of \(v \).

To find general points of inflexion, we must differentiate again:

\[
\frac{d^2v}{dt^2} = -400\left(\frac{d}{dt}\left[te^{-50t^2} \right] \right)
\]

\[
= -400\left[e^{-50t^2} - 100t^2e^{-50t^2} \right]
\]

For inflexion, \(\frac{d^2v}{dt^2} = -400e^{-50t^2}\left[1-100t^2 \right] = 0 \) gives \(t^2 = \frac{1}{100} \), \(t = \pm \frac{1}{10} \). Hence

\[
v = 4e^{-50t^2}
\]

10. We have

\[
R = \frac{\ln \left(\frac{t}{t_i} \right)}{2\pi k} + \frac{1}{2\pi th} = \frac{1}{2\pi k} \left[\ln \left(\frac{t}{t_i} \right) + \frac{t^{-1}}{h} \right] \quad \text{(Factorizing)}
\]

For stationary points we need to differentiate \(R \) with respect to \(t \):
\[
\frac{dR}{dt} = \frac{1}{2\pi} \left[\frac{1}{k} \frac{1}{t/t_i} \left(\frac{1}{t_i} \right) - \frac{t^2}{h} \right]
\]
\[
= \frac{1}{2\pi} \left[\frac{1}{k} \frac{1}{t} - \frac{1}{t^2 h} \right] \quad \text{(Cancelling t's)}
\]

For stationary points we need \(\frac{dR}{dt} = 0 \), thus
\[
\frac{1}{kt} - \frac{1}{t^2 h} = 0 \quad \text{(because \(\frac{1}{2\pi} \) cannot be zero)}
\]
\[
\frac{1}{kt} = \frac{1}{t^2 h} \quad \text{gives} \quad t = \frac{k}{h} \quad \text{[Transposing]}
\]

So thickness \(t = k/h \) gives a stationary point. **How do we show this value gives minimum \(R \)?** Use the second derivative test:
\[
\frac{d^2R}{dt^2} = \frac{1}{2\pi} \left[- \frac{t^{-2}}{k} + \frac{2t^{-3}}{h} \right] = \frac{1}{2\pi} \left[- \frac{1}{kt^2} + \frac{2}{t^3 h} \right]
\]

Substituting \(t = k/h \):
\[
\frac{d^2R}{dt^2} = \frac{1}{2\pi} \left[\frac{-h^2}{k^3} + \frac{2h^2}{k^3} \right]
\]
\[
= \frac{1}{2\pi} \left[\frac{h^2}{k^3} \right] > 0 \quad \text{(since \(k > 0 \))}
\]

Hence by (7.3), thickness \(t = k/h \) gives minimum resistance \(R \).

11. We have \(\alpha = \frac{n^2 + 12}{3-n} \). **How do we differentiate this?**

You can apply long division to rewrite \(\alpha \) or use the quotient rule (6.32):
\[
\frac{d\alpha}{dn} = \frac{u'v - uv'}{v^2}
\]
\[
= \frac{2n(3-n) + (n^2 + 12)}{(3-n)^2}
\]
\[
= \frac{6n - 2n^2 + n^2 + 12}{(3-n)^2}
\]
\[
= \frac{12 + 6n - n^2}{(3-n)^2}
\]

(6.32) \((u/v)' = (u'v - uv')/v^2 \)
(7.3) \(R' = 0, \ R'' > 0 \) minimum
For \(\frac{d\alpha}{dn} = 0, \quad 12 + 6n - n^2 = 0 \) [Numerator=0]

Multiplying by \(-1\) gives the quadratic \(n^2 - 6n - 12 = 0 \)

How do we solve this?

Substituting \(a = 1, \quad b = -6 \) and \(c = -12 \) into the quadratic formula:

\[
n = \frac{6 \pm \sqrt{36 + (4 \times 12)}}{2}
\]

\[
= 7.58 \text{ or } -1.58
\]

Hence \(n = 7.58 \) (cannot have a negative gear ratio).

How can we show \(n = 7.58 \) gives maximum acceleration, \(\alpha \)?

Use the first derivative test:

\[
\frac{d\alpha}{dn} = \frac{12 + 6n - n^2}{(3-n)^2}
\]

We only need to examine the sign of the numerator because the denominator is positive.

If \(n > 7.58 \), try \(n = 8 \), then \(12 + (6 \times 8) - 8^2 = -4 < 0 \)

If \(n < 7.58 \), try \(n = 7 \), then \(12 + (6 \times 7) - 7^2 = 5 > 0 \)

By (7.7), \(n = 7.58 \) gives maximum acceleration.

12. Replacing \(e^x \) with the Maclaurin series expansion of (7.15) we have:

\[
e^x - 1 = \left(1 + x + x^2/2! + x^3/3! + \ldots\right) - 1
\]

\[
= x + x^2/2! + x^3/3! + \ldots
\]

\[
= x \left(1 + x/2! + x^3/3! + \ldots\right)
\]

\[
= 1 + x + x^2/2! + x^3/3! + \ldots
\]

So \(\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \left(1 + \frac{x}{2!} + \frac{x^2}{3!} + \ldots\right) = 1 \)

13. The gradient, \(m \), of the tangent is evaluated by differentiating \(y = \sin^2(x) \):

\[
\frac{dy}{dx} = 2\sin(x)\cos(x)
\]

At \(x = \frac{\pi}{4} \), \(\frac{dy}{dx} = 2\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = 1 \). Hence \(m = 1 \). Equation of tangent is of the form \(y = x + c \). How can we find \(c \)?

At \(x = \frac{\pi}{4} \), \(y = \left[\sin\left(\frac{\pi}{4}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}\right] \), so the tangent goes through \(x = \frac{\pi}{4} \), \(y = \frac{1}{2} \).

Substituting these gives:

\[
e^x = 1 + x + x^2/2! + x^3/3! + \ldots
\]
\[\frac{1}{2} = \frac{\pi}{4} + c \]
\[c = \frac{1}{2} - \frac{\pi}{4} = \frac{2 - \pi}{4} = \frac{1}{4} (2 - \pi) \]

Therefore the equation of the tangent is \(y = x + \frac{1}{4} (2 - \pi) \). How do we find the equation of the normal?

The gradient of the normal = \(-1\) so the equation of the normal is of the form:
\[y = -x + c_i \quad (** \) \]

The normal also goes through the point \(x = \frac{\pi}{4}, \ y = \frac{1}{2} \). So
\[\frac{1}{2} = -\frac{\pi}{4} + c_i \] gives \(c_i = \frac{1}{2} + \frac{\pi}{4} = \frac{2 + \pi}{4} = \frac{1}{4} (2 + \pi) \)

Substituting \(c_i = \frac{1}{4} (2 + \pi) \) into \(**\) gives:
\[y = -x + \frac{1}{4} (2 + \pi) = \frac{1}{4} (2 + \pi) - x \]

14. We need to differentiate \(v = kx \ln \left(\frac{1}{x} \right) \), how?

First we can rewrite \(v \) as follows:
\[v = kx \ln \left(\frac{1}{x} \right) = kx \ln \left(x^{-1} \right) = -kx \ln \left(x \right) \]

We can differentiate \(v \) by using the product rule, (6.31):
\[u = x, \quad w = \ln \left(x \right) \]
\[u' = 1, \quad w' = 1/x \]

Applying (6.31)
\[\frac{dv}{dx} = -k \left[1. \ln \left(x \right) + x \left(\frac{1}{x} \right) \right] = -k \left[\ln \left(x \right) + 1 \right] \]

For stationary points this is zero, therefore
\[-k \left[\ln \left(x \right) + 1 \right] = 0 \]
\[\ln \left(x \right) + 1 = 0 \quad (\text{because } k > 0) \]
\[\ln \left(x \right) = -1 \]

How can we find \(x \) from \(\ln \left(x \right) = -1 \)?
Taking exponential of both sides gives \(x = e^{-1} \).
Differentiate again to find whether this value, \(x = e^{-1} \), gives maximum velocity.
\[\frac{dv}{dx} = -k \left[\ln \left(x \right) + 1 \right] \]
\[\frac{d^2v}{dx^2} = -k \left(\frac{1}{x} \right) = -\frac{k}{x} \]

(6.31) \((uw)' = u'w + uw' \)
Substituting \(x = e^{-1} \) gives \(\frac{d^2v}{dx^2} = -\frac{k}{e^{-1}} < 0 \) because \(k \) and \(e^{-1} \) are both positive. By (7.2) the maximum velocity occurs at \(x = e^{-1} \).

15. Substituting \(i = 5e^{-500t} \) and \(L = 2 \times 10^{-3} \) into \(v \) gives

\[
v = \left(2 \times 10^{-3}\right) \frac{d}{dt} \left(5e^{-500t}\right) = \left(2 \times 10^{-3}\right) \left(-500 \times 5e^{-500t}\right) = \left(2 \times 10^{-3}\right) \left(-2500\right)e^{-500t} = -5e^{-500t}.
\]

As \(t \to \infty, i \to 0 \) because exponential function, \(e^{-500t} \), goes to zero. We also know it is a decaying graph because of the negative sign in front of the \(500t \). What about stationary points:

\[
i = 5e^{-500t}, \quad \frac{di}{dt} = -2500e^{-500t}
\]

Putting this to zero gives \(-2500e^{-500t} = 0\). Where is this function zero? This function cannot be zero for any real values of \(t \) because it is the exponential function so there are no stationary points.

At \(t = 0, i = 5e^0 = 5 \). Thus we have:

\[
i = 5e^{-500t} \quad v = -5e^{-500t}
\]

16. Rewriting \(F \) we have:

\[
F = \frac{Ir^2}{2} \left(x^2 + r^2\right)^{3/2}
\]

\[
\frac{dF}{dx} = \frac{Ir^2}{2} \left(-\frac{3}{2}\right) \left(x^2 + r^2\right)^{-1/2} \left(2x\right) = -\frac{3Ir^2}{2} \frac{x}{\left(x^2 + r^2\right)^{3/2}}
\]

\[
\frac{dF}{dx} = -\frac{3Ir^2}{2} \frac{x}{\left(x^2 + r^2\right)^{3/2}}
\]

Points of inflexion occurs at \(\frac{d^2F}{dx^2} = 0 \), so we need to differentiate again, how?

Use the quotient rule (6.32) with:

\[
u = x \quad v = \left(x^2 + r^2\right)^{3/2} \quad u' = 1 \quad v' = 5 \frac{\left(x^2 + r^2\right)^{3/2}}{2} 2x = 5x \left(x^2 + r^2\right)^{3/2}
\]

(6.32) \[
\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}
\]

(7.2) \[
v' = 0, \quad v'' < 0 \quad \text{maximum}
\]
Putting this to zero gives that the numerator is zero:

\[-\frac{3Ir^2}{2} \left[(x^2 + r^2)^{5/2} - 5x^2 \left(x^2 + r^2 \right)^{3/2} \right] = 0 \]

This can only occur if the terms inside the square brackets are zero because the current \(I \neq 0 \) and radius \(r \neq 0 \).

\[(x^2 + r^2)^{5/2} - 5x^2 \left(x^2 + r^2 \right)^{3/2} = 0 \]

Factorizing:

\[(x^2 + r^2)^{3/2} \left[(x^2 + r^2) - 5x^2 \right] = 0 \]

Again only the square brackets term can be zero because \((x^2 + r^2)^{3/2} \neq 0 \) (all terms are squared and no negative sign).

\[(x^2 + r^2) - 5x^2 = 0 \text{ implies } r^2 - 4x^2 = 0 \text{ which gives } x = \pm \frac{r}{2} \]

Since \(x \) is distance, \(x = \frac{r}{2} \). We need to check for change of sign of \(\frac{d^2F}{dx^2} \). If \(x < \frac{r}{2} \), then \(r^2 - 4x^2 > 0 \), hence \(\frac{d^2F}{dx^2} < 0 \) because there is a negative sign outside the square brackets in \((\dagger)\).

If \(x > \frac{r}{2} \), then \(r^2 - 4x^2 < 0 \), hence \(\frac{d^2F}{dx^2} > 0 \). At \(x = \frac{r}{2} \) we have a uniform field.

17. How can we differentiate \(\eta \) with respect to \(x \)?

Use the quotient rule (6.32) with

\[u = xs \cos \phi \quad v = L_i + xs \cos \phi + x^2L_c \]

\[u' = s \cos \phi \quad v' = s \cos \phi + 2xL_c \]

Substituting these into (6.32) gives:

\[
\frac{d\eta}{dx} = \frac{s \cos \phi \left(L_i + xs \cos \phi + x^2L_c \right) - xs \cos \phi \left(s \cos \phi + 2xL_c \right)}{ \left(L_i + xs \cos \phi + x^2L_c \right)^2 }
\]

\[= \frac{L_i s \cos \phi + xs^2 \cos^2 \phi + x^2L_c s \cos \phi - xs^2 \cos^2 \phi - 2x^2sL_c \cos \phi}{\left(L_i + xs \cos \phi + x^2L_c \right)^2} \]

\[= \frac{L_i s \cos \phi - x^2sL_c \cos \phi}{\left(L_i + xs \cos \phi + x^2L_c \right)^2} \]

\[
\frac{d\eta}{dx} = \frac{s \cos \phi \left(L_i - x^2L_c \right)}{\left(L_i + xs \cos \phi + x^2L_c \right)^2}
\]

\((u/v)' = (u'v - uv')/v^2 \)
For stationary point \(\frac{d\eta}{dx} = 0 \), hence the numerator = 0. Since \(s\cos(\phi) > 0 \) we have

\[
L_i - x^2 L_e = 0
\]

\[
L_i = x^2 L_e, \quad x^2 = \frac{L_i}{L_e} \text{ gives } x = \sqrt{\frac{L_i}{L_e}}
\]

How can we show that this value of \(x \) gives maximum efficiency?

Use the first derivative test (7.7):

\[
\frac{d\eta}{dx} = \frac{s\cos(\phi) (L_i - x^2 L_e)}{(L_i + xs\cos(\phi) + x^2 L_e)^2}
\]

We only need to examine the term \(L_i - x^2 L_e \) because the other terms are positive.

If \(x < \sqrt{\frac{L_i}{L_e}} \) then \(x^2 < \frac{L_i}{L_e} \) so \(L_i - x^2 L_e > 0 \) and \(\frac{d\eta}{dx} > 0 \)

If \(x > \sqrt{\frac{L_i}{L_e}} \) then \(x^2 > \frac{L_i}{L_e} \) so \(L_i - x^2 L_e < 0 \) and \(\frac{d\eta}{dx} < 0 \)

By (7.7), \(x = \sqrt{\frac{L_i}{L_e}} \) gives maximum efficiency.

18. (i) Let \(f(x) = \sinh(x) \) then

\[
f(x) = \sinh(x) \quad f(0) = \sinh(0) = 0 \\
f'(x) = \cosh(x) \quad f'(0) = \cosh(0) = 1 \\
f''(x) = \sinh(x) \quad f''(0) = 0 \\
f'''(x) = \cosh(x) \quad f'''(0) = 1 \\
f^{(4)}(x) = \sinh(x) \quad f^{(4)}(0) = 0 \\
f^{(5)}(x) = \cosh(x) \quad f^{(5)}(0) = 1
\]

Substituting these into (7.14) gives:

\[
\sinh(x) = 0 + (1)x + 0 + (1)\frac{x^3}{3!} + 0 + (1)\frac{x^5}{5!} + \ldots
\]

\[
= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots
\]

(ii) The MAPLE output is on the web site.
19. (i) We let \(f(x) = \tan^{-1}(x) \):
\[
 f(x) = \tan^{-1}(x) \quad f(0) = 0 \\
 f'(x) = \frac{1}{1 + x^2} \quad f'(0) = 1 \\
 f''(x) = -\frac{2x}{(1 + x^2)^2} \quad f''(0) = 0 \\
 f'''(x) = \frac{6x^2 - 2}{(1 + x^2)^3} \quad f'''(0) = -2 \\
 f^{(4)}(x) = \frac{24(x - x^3)}{(1 + x^2)^4} \quad f^{(4)}(0) = 0 \\
 f^{(5)}(x) = \frac{24(1 - 10x^2 + 5x^4)}{(1 + x^2)^5} \quad f^{(5)}(0) = 24
\]

We have 3 non-zero terms; \(f'(0) = 1 \), \(f'''(0) = -2 \) and \(f^{(5)}(0) = 24 \).
Substituting these into (7.14) gives
\[
\tan^{-1}(x) = 0 + (1 \times x) + 0 + \left(\frac{-2}{3!}\right)x^3 + 0 + \left(\frac{24}{5!}\right)x^5 + ...
\]
\[= x - \frac{x^3}{3} + \frac{x^5}{5} + ...\]
(\(*\))

(ii) To obtain the required result we need to substitute \(x = 1 \) into (\(*\)):
\[
\tan^{-1}(1) = 1 - \frac{1}{3} + \frac{1}{5} + ... \\
\]
Remember \(\tan^{-1}(1) = \frac{\pi}{4} \). Thus
\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} + ...
\]

(iii) All evaluations equal \(\pi/4 \).

20. (i)
\[
y = \frac{1}{3}x^3 - 3x^2 + 8x - 3 \\
\frac{dy}{dx} = x^2 - 6x + 8
\]
For turning point \(\frac{dy}{dx} = 0 \\
x^2 - 6x + 8 = 0, \ (x - 4)(x - 2) = 0 \) gives \(x = 4 \) or \(x = 2 \)
\[
\frac{d^2y}{dx^2} = 2x - 6
\]
At \(x = 2, \ \frac{d^2y}{dx^2} = -2 < 0 \) maximum, \(y = \frac{11}{3} \)

(7.14) \[f(x) = f(0) + f'(0)x + x^2f''(0)/2! + x^3f'''(0)/3! + ... \]
At $x = 4$, $\frac{d^2y}{dx^2} = 2 > 0$ minimum, $y = \frac{7}{3}$

The curve $y = \frac{1}{3}x^3 - 3x^2 + 8x - 3$ cuts the y axis at -3 (the value of y at $x = 0$).

(ii) Let

$$f(x) = \frac{1}{3}x^3 - 3x^2 + 8x - 3$$

$$f'(x) = x^2 - 6x + 8$$

By looking at the graph, take $r_1 = 0$ (you could just as well take $r_1 = 1$)

$$r_2 = \frac{0 - f(0)}{f''(0)} = 0.3750$$

$$r_3 = 0.375 - \frac{f(0.375)}{f''(0.375)} = 0.4437$$

$$r_4 = 0.4437 - \frac{f(0.4437)}{f''(0.4437)} = 0.4458$$

$$r_5 = 0.4458 - \frac{f(0.4458)}{f''(0.4458)} = 0.4458$$

Since $r_4 = r_5$, the root of $\frac{1}{3}x^3 - 3x^2 + 8x - 3 = 0$ is 0.446 (3 d.p.).

21. (i) We use the trapezium rule to determine the area A in the given diagram

$$A = \frac{1}{2} x (4 + y) \quad (*)$$

We are given that

$y + YZ = 6$ implies that $YZ = 6 - y$
YZ can be found by Pythagoras:

\[YZ^2 = (6 - y)^2 = (4 - y)^2 + x^2 \]

\[36 - 12y + y^2 = 16 - 8y + y^2 + x^2 \]

Collecting like terms gives

\[20 - x^2 = 4y \quad \text{which gives} \quad y = \frac{1}{4} (20 - x^2) \]

Substituting \(y = \frac{1}{4} (20 - x^2) \) into (*) yields

\[A = \frac{1}{2} x \left(4 + \frac{1}{4} (20 - x^2) \right) \]

\[= \frac{1}{8} x (16 + 20 - x^2) = \frac{1}{8} x (36 - x^2) = \frac{1}{8} (36x - x^3) \]

(ii) For maximum cross-sectional area we differentiate the above function:

\[A = \frac{1}{8} (36x - x^3) \]

\[\frac{dA}{dx} = \frac{1}{8} (36 - 3x^2) \]

Stationary points occur where the derivative is zero:

\[\frac{1}{8} (36 - 3x^2) = 0 \quad \Rightarrow \quad 36 - 3x^2 = 0 \quad \Rightarrow \quad x^2 = 12 \quad \Rightarrow \quad x = \sqrt{12} = 2\sqrt{3} \]

To show that we have a maximum at this value of \(x \) we differentiate again:

\[\frac{dA}{dx} = \frac{1}{8} (36 - 3x^2) \]

\[\frac{d^2A}{dx^2} = \frac{1}{8} (0 - 6x) \]

Substituting \(x = 2\sqrt{3} \) into \(\frac{d^2A}{dx^2} = \frac{1}{8} (0 - 6x) = -\frac{6}{8} x \) gives a negative value so we have maximum at \(x = 2\sqrt{3} \). We can substitute this value into \(y = \frac{1}{4} (20 - x^2) \) to find \(y \):

\[y = \frac{1}{4} (20 - x^2) = \frac{1}{4} (20 - (2\sqrt{3})^2) = 2 \]

Hence \(x = 2\sqrt{3} \) m and \(y = 2 \) m gives maximum cross-sectional area.

22. Using the binomial series, (7.24), with \(x = -\frac{v}{c^2} \) we have

\[
\left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} = 1 + \frac{1}{2} \left(-\frac{v^2}{c^2} \right) + \left[\frac{1}{2} \left(-\frac{v^2}{c^2} \right) \right] \left(-\frac{v^2}{c^2} \right)^2 + \left[\frac{1}{2} \left(-\frac{v^2}{c^2} \right) \right] \left(-\frac{v^2}{c^2} \right)^3 + ...
\]

\[(7.24) \]

\[(1 + x)^n = 1 + nx + \left[\frac{n(n-1)}{2!} \right] x^2 + \left[\frac{n(n-1)(n-3)}{3!} \right] x^3 + ...
\]

\[(7.29) \]

\[r_{n+1} = r_n + \frac{f(r_n)}{f'(r_n)} \]
23. Similar to solution of question 22 but we ignore higher powers.
By using the binomial expansion we can show that
\[\frac{1}{\sqrt{1-x}} = (1-x)^{-1/2} = 1 + \frac{1}{2} x + \frac{3}{8} x^2 + \frac{5}{16} x^3 + \ldots \]

Substituting \(x = \left(\frac{v}{c} \right)^2 \) because we are given \(m = \frac{m_0}{\sqrt{1-\left(\frac{v}{c} \right)^2}} \) into the above:

\[
m = \frac{m_0}{\sqrt{1-\left(\frac{v}{c} \right)^2}} = \frac{m_0}{\sqrt{1-\left(\frac{v}{c} \right)^2}} = m_0 \left(1 + \frac{1}{2} \left(\frac{v}{c} \right)^2 + \frac{3}{8} \left(\frac{v}{c} \right)^4 + \frac{5}{16} \left(\frac{v}{c} \right)^6 + \ldots \right)
\]

We are told that \(v \) is very small compared to \(c \) therefore \(\left(\frac{v}{c} \right) \) is a small number and taking powers makes it even smaller. Hence we ignore the higher powers of \(\left(\frac{v}{c} \right) \), that is powers above 2. Hence we have

\[
m = m_0 \left(1 + \frac{1}{2} \left(\frac{v}{c} \right)^2 \right) = m_0 \left(1 + \frac{1}{2} \frac{v^2}{c^2} \right)
\]

Substituting this into the given formula for KE, \(K = (m-m_0)c^2 \), we have

\[
K = \left(m_0 \left(1 + \frac{1}{2} \frac{v^2}{c^2} \right) - m_0 \right) c^2
\]

\[
= \left(m_0 + \frac{1}{2} \frac{v^2}{c^2} m_0 - m_0 \right) c^2 = \left(\frac{1}{2} \frac{v^2}{c^2} m_0 \right) c^2 = \frac{1}{2} m_0 v^2
\]

This is our required result.