Complete solutions to Intro(f)

1. (a) (i) The fourth place after the decimal point in 1.618034 is 0 and because 0 < 5 so we leave the 8 intact:

\[1.618034 = 1.618 \text{ (3 d.p.)} \]

(ii) For 2 d.p. we examine the third decimal place which is 8 and since 8 is greater than 5 so we increase the 1, next to 8, to 2:

\[1.618034 = 1.62 \text{ (2 d.p.)} \]

(b) (i) 4.6692 is already written to 4 d.p.

(ii) For 2 d.p. we weigh up the third place after the decimal point which is 9 and 9 > 5, so we increase the adjacent 6 to 7:

\[4.6692 = 4.67 \text{ (2 d.p.)} \]

(c) Similarly (i) 2.503 (3 d.p.) (ii) 2.5 (1 d.p.)

(d) (i) For 3 d.p. we inspect the fourth number after the decimal point

\[0.373 \quad \overline{9} \quad 6 \]

which is 9 so we increase the 3, next to 9, to 4:

\[0.37396 = 0.374 \text{ (3 d.p.)} \]

(ii) 0.37 (2 d.p.)

2. (a) (i) Since we are interested in writing 1.618034 to 3 s.f., we examine the fourth number which is 8 and 8 is greater than 5 so we increase the 1 to 2:

\[1.6 \quad \overline{1} \quad 8034 = 1.62 \text{ (3 s.f.)} \]

(ii) For 2 s.f. we weigh up the third number from the left

\[1.6 \quad \overline{1} \quad 8034 \]

Because 1 is less than 5, so the 6 remains untouched:

\[1.618034 = 1.6 \text{ (2 s.f.)} \]

(b) (i) For 5 s.f. we examine the sixth figure from the left

\[2.9732 \quad \overline{1} \quad 4 \]

which is 1 and of course 1 is less than 5 so the adjacent 2 remains as 2:

\[2.973214 = 2.9732 \text{ (5 s.f.)} \]

(ii) For 2 s.f. we look at the third number from the left, which is 7, so we increase the 9 to 10. Hence

\[2.973214 = 3.0 \text{ (2 s.f.)} \]

(c) (i) The first significant digit is the 1 immediately following the decimal point, as this is the first non-zero digit. To write to 4 s.f. we need to examine the fifth digit afterwards, which is the third zero

\[0.1100 \quad \overline{0} \quad 1 \]

Hence to 4 s.f. the answer is 0.1100.

Note that trialing zero's following the decimal point are always significant. (Trialing zeros before a decimal point may or may not be significant, thus 23 048 is 23 000 for both 2 s.f. and 3 s.f.)
(ii) To write 0.110001 to 1 s.f. we need to examine the second non-zero number from the left which is 1 and of course <5, so we drop it. Hence

\[0.10001 \text{ (second non-zero number)} \]

\[0.110001 = 0.1 \text{ (1 s.f.)} \]

(d) (i) For 2 s.f. of 9.869 we inspect the third number from the left which is 6 and 6 is greater than 5, so we increase 8 to 9:

\[9.869 = 9.9 \text{ (2 s.f.)} \]

(ii) For 1 s.f. we look at the second number from the left which is 8 and 8 is greater than 5 so the 9 goes to 10:

\[9.869 = 10 \text{ (1 s.f.)} \]

3. (a) \(1729 = 1700 \) (2 s.f.)

(b) For 2 s.f. we weigh up the third number from the left which is 9 and so the preceding 9 increases to 10:

\[99954 = 100000 \text{ (2 s.f.)} \]

(c) The third number from the left is 7 and it is greater than 5 so we increase the 0 to 1:

\[107928278317 = 110000000000 \text{ (2 s.f.)} \]

4. (a) \(\pi = 3.14159 \ldots \) To write this to 2 d.p. we inspect the third decimal place which is 1, hence

\[\pi = 3.14 \text{ (2 d.p.)} \]

\(e = 2.71828 \ldots \) To 2 d.p. we inspect the third place after the decimal point which is 8 and 8 is greater than 5 so we increase the 1 to 2:

\[e = 2.72 \text{ (2 d.p.)} \]

Similarly \(\sqrt{2} = 1.414 \ldots \) we have

\[\sqrt{2} = 1.41 \text{ (2 d.p.)} \]

(b) For 2 s.f. in each case we just need to write down the first 2 figures because the third digit from the left in each case is less than 5. Hence

\[\pi = 3.1 \text{ (2 s.f.)} \quad e = 2.7 \text{ (2 s.f.)} \quad \sqrt{2} = 1.4 \text{ (2 s.f.)} \]