Brief Contents

PART I
FUNDAMENTALS OF PROBABILITY AND STATISTICAL THINKING
1 An Introduction to Probability 3
2 Random Variables and Probability Distributions 25
3 Summary Statistics: Measures of Location and Spread 57
4 Framing and Testing Hypotheses 79
5 Three Frameworks for Statistical Analysis 107

PART II
DESIGNING EXPERIMENTS
6 Designing Successful Field Studies 137
7 A Bestiary of Experimental and Sampling Designs 163
8 Managing and Curating Data 207

PART III
DATA ANALYSIS
9 Regression 239
10 The Analysis of Variance 289
11 The Analysis of Categorical Data 349
12 The Analysis of Multivariate Data 383

PART IV
ESTIMATION
13 The Measurement of Biodiversity 449
14 Detecting Populations and Estimating their Size 483

Appendix Matrix Algebra for Ecologists 523
Contents

PART I
Fundamentals of Probability and Statistical Thinking

CHAPTER 1
An Introduction to Probability 3
What Is Probability? 4
Measuring Probability 4
The Probability of a Single Event: Prey Capture by Carnivorous Plants 4
Estimating Probabilities by Sampling 7
Problems in the Definition of Probability 9
The Mathematics of Probability 11
Defining the Sample Space 11
Complex and Shared Events: Combining Simple Probabilities 13
Probability Calculations: Milkweeds and Caterpillars 15
Complex and Shared Events: Rules for Combining Sets 18
Conditional Probabilities 21

CHAPTER 2
Random Variables and Probability Distributions 25
Discrete Random Variables 26
Bernoulli Random Variables 26
An Example of a Bernoulli Trial 27
Many Bernoulli Trials = A Binomial Random Variable 28
The Binomial Distribution 31
Poisson Random Variables 34
An Example of a Poisson Random Variable: Distribution of a Rare Plant 36
CHAPTER 3

Summary Statistics: Measures of Location and Spread 57

Measures of Location 58
 The Arithmetic Mean 58
 Other Means 60
 Other Measures of Location: The Median and the Mode 64
 When to Use Each Measure of Location 65

Measures of Spread 66
 The Variance and the Standard Deviation 66
 The Standard Error of the Mean 67
 Skewness, Kurtosis, and Central Moments 69
 Quantiles 71
 Using Measures of Spread 72

Some Philosophical Issues Surrounding Summary Statistics 73

Confidence Intervals 74
 Generalized Confidence Intervals 76

Summary 78

CHAPTER 4

Framing and Testing Hypotheses 79

Scientific Methods 80
 Deduction and Induction 81
 Modern-Day Induction: Bayesian Inference 84
 The Hypothetico-Deductive Method 87

Testing Statistical Hypotheses 90
 Statistical Hypotheses versus Scientific Hypotheses 90
 Statistical Significance and P-Values 91
 Errors in Hypothesis Testing 100

Parameter Estimation and Prediction 104

Summary 105

CHAPTER 5

Three Frameworks for Statistical Analysis 107

Sample Problem 107

Monte Carlo Analysis 109
 Step 1: Specifying the Test Statistic 111
 Step 2: Creating the Null Distribution 111
 Step 3: Deciding on a One- or Two-Tailed Test 112
 Step 4: Calculating the Tail Probability 114
 Assumptions of the Monte Carlo Method 115
 Advantages and Disadvantages of the Monte Carlo Method 115

Parametric Analysis 117
 Step 1: Specifying the Test Statistic 117
 Step 2: Specifying the Null Distribution 119
 Step 3: Calculating the Tail Probability 119
 Assumptions of the Parametric Method 120
 Advantages and Disadvantages of the Parametric Method 121
Non-Parametric Analysis: A Special Case of Monte Carlo Analysis 121

Bayesian Analysis 122
Step 1: Specifying the Hypothesis 122
Step 2: Specifying Parameters as Random Variables 125
Step 3: Specifying the Prior Probability Distribution 125
Step 4: Calculating the Likelihood 129
Step 5: Calculating the Posterior Probability Distribution 129
Step 6: Interpreting the Results 130
Assumptions of Bayesian Analysis 132
Advantages and Disadvantages of Bayesian Analysis 133
Summary 133

PART II
Designing Experiments

CHAPTER 6
Designing Successful Field Studies 137
What Is the Point of the Study? 137
Are There Spatial or Temporal Differences in Variable Y? 137
What Is the Effect of Factor X on Variable Y? 138
Are the Measurements of Variable Y Consistent with the Predictions of Hypothesis H? 138
Using the Measurements of Variable Y, What Is the Best Estimate of Parameter θ in Model Z? 139
Manipulative Experiments 139
Natural Experiments 141
Snapshot versus Trajectory Experiments 143
The Problem of Temporal Dependence 144
Press versus Pulse Experiments 146
Replication 148
How Much Replication? 148
How Many Total Replicates Are Affordable? 149
The Rule of 10 150
Large-Scale Studies and Environmental Impacts 150
Ensuring Independence 151
Avoiding Confounding Factors 153
Replication and Randomization 154
Designing Effective Field Experiments and Sampling Studies 158
Are the Plots or Enclosures Large Enough to Ensure Realistic Results? 158
What Is the Grain and Extent of the Study? 158
Does the Range of Treatments or Census Categories Bracket or Span the Range of Possible Environmental Conditions? 159
Have Appropriate Controls Been Established to Ensure that Results Reflect Variation Only in the Factor of Interest? 160
CHAPTER 7
A Bestiary of Experimental and Sampling Designs 163

Categorical versus Continuous Variables 164
Dependent and Independent Variables 165
Four Classes of Experimental Design 165
 Regression Designs 166
 ANOVA Designs 171
 Alternatives to ANOVA: Experimental Regression 197
 Tabular Designs 200
 Alternatives to Tabular Designs: Proportional Designs 203
Summary 204

CHAPTER 8
Managing and Curating Data 207

The First Step: Managing Raw Data 208
 Spreadsheets 208
 Metadata 209
The Second Step: Storing and Curating the Data 210
 Storage: Temporary and Archival 210
 Curating the Data 211
The Third Step: Checking the Data 212
 The Importance of Outliers 212
 Errors 214
 Missing Data 215
 Detecting Outliers and Errors 215
 Creating an Audit Trail 223
The Final Step: Transforming the Data 223
 Data Transformations as a Cognitive Tool 224
 Data Transformations because the Statistics Demand It 229
 Reporting Results: Transformed or Not? 233
The Audit Trail Redux 233
Summary: The Data Management Flow Chart 235

PART III
Data Analysis

CHAPTER 9
Regression 239
Defining the Straight Line and Its Two Parameters 239
Fitting Data to a Linear Model 241
Variances and Covariances 244
Contents

Least-Squares Parameter Estimates 246
Variance Components and the Coefficient of Determination 248
Hypothesis Tests with Regression 250
 The Anatomy of an ANOVA Table 251
 Other Tests and Confidence Intervals 253
Assumptions of Regression 257
Diagnostic Tests For Regression 259
 Plotting Residuals 259
 Other Diagnostic Plots 262
 The Influence Function 262
Monte Carlo and Bayesian Analyses 264
 Linear Regression Using Monte Carlo Methods 264
 Linear Regression Using Bayesian Methods 266
Other Kinds of Regression Analyses 268
 Robust Regression 268
 Quantile Regression 271
 Logistic Regression 273
 Non-Linear Regression 275
 Multiple Regression 275
 Path Analysis 279
Model Selection Criteria 282
 Model Selection Methods for Multiple Regression 283
 Model Selection Methods in Path Analysis 284
 Bayesian Model Selection 285
Summary 287

CHAPTER 10

The Analysis of Variance 289
Symbols and Labels in ANOVA 290
ANOVA and Partitioning of the Sum of Squares 290
The Assumptions of ANOVA 295
Hypothesis Tests with ANOVA 296
Constructing F-Ratios 298
A Bestiary of ANOVA Tables 300
 Randomized Block 300
 Nested ANOVA 302
 Two-Way ANOVA 304
 ANOVA for Three-Way and n-Way Designs 308
 Split-Plot ANOVA 308
 Repeated Measures ANOVA 309
 ANCOVA 314
Random versus Fixed Factors in ANOVA 317
Partitioning the Variance in ANOVA 322
After ANOVA: Plotting and Understanding Interaction Terms 325
 Plotting Results from One-Way ANOVAs 325
 Plotting Results from Two-Way ANOVAs 327
 Understanding the Interaction Term 331
 Plotting Results from ANCOVAs 333
Comparing Means 335
 A Posteriori Comparisons 337
 A Priori Contrasts 339
Bonferroni Corrections and the Problem of Multiple Tests 345
Summary 348

CHAPTER 11

The Analysis of Categorical Data 349
Two-Way Contingency Tables 350
 Organizing the Data 350
 Are the Variables Independent? 352
 Testing the Hypothesis: Pearson’s Chi-square Test 354
 An Alternative to Pearson’s Chi-Square: The G-Test 358
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Chi-square Test and the G-Test for $R \times C$ Tables</td>
<td>359</td>
</tr>
<tr>
<td>Which Test To Choose?</td>
<td>363</td>
</tr>
<tr>
<td>Multi-Way Contingency Tables</td>
<td>364</td>
</tr>
<tr>
<td>Organizing the Data</td>
<td>364</td>
</tr>
<tr>
<td>On to Multi-Way Tables!</td>
<td>368</td>
</tr>
<tr>
<td>Bayesian Approaches to Contingency Tables</td>
<td>375</td>
</tr>
<tr>
<td>Tests for Goodness-of-Fit</td>
<td>376</td>
</tr>
<tr>
<td>Goodness-of-Fit Tests for Discrete Distributions</td>
<td>376</td>
</tr>
<tr>
<td>Testing Goodness-of-Fit for Continuous Distributions: The Kolmogorov-Smirnov Test</td>
<td>380</td>
</tr>
<tr>
<td>Summary</td>
<td>382</td>
</tr>
</tbody>
</table>

CHAPTER 12

The Analysis of Multivariate Data 383

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approaching Multivariate Data</td>
<td>383</td>
</tr>
<tr>
<td>The Need for Matrix Algebra</td>
<td>384</td>
</tr>
<tr>
<td>Comparing Multivariate Means</td>
<td>387</td>
</tr>
<tr>
<td>Comparing Multivariate Means of Two Samples: Hotelling's T^2 Test</td>
<td>387</td>
</tr>
<tr>
<td>Comparing Multivariate Means of More Than Two Samples: A Simple MANOVA</td>
<td>390</td>
</tr>
</tbody>
</table>

PART IV

Estimation

CHAPTER 13

The Measurement of Biodiversity 449

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Species Richness</td>
<td>450</td>
</tr>
<tr>
<td>Standardizing Diversity Comparisons through Random Subsampling</td>
<td>453</td>
</tr>
</tbody>
</table>

©2012 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Contents

- **Rarefaction Curves: Interpolating Species Richness** 455
- **The Expectation of the Individual-Based Rarefaction Curve** 459
- **Sample-Based Rarefaction Curves: Massachusetts Ants** 461
- **Species Richness versus Species Density** 465
- **The Statistical Comparison of Rarefaction Curves** 466
- **Assumptions of Rarefaction** 467
- **Asymptotic Estimators: Extrapolating Species Richness** 470
- **Rarefaction Curves Redux: Extrapolation and Interpolation** 476
- **Estimating Species Diversity and Evenness** 476
 - **Hill Numbers** 479
- **Software for Estimation of Species Diversity** 481
- **Summary** 482

CHAPTER 14

Detecting Populations and Estimating their Size 483

- **Occupancy** 485
 - The Basic Model: One Species, One Season, Two Samples at a Range of Sites 487
- **Occupancy of More than One Species** 493
- **A Hierarchical Model for Parameter Estimation and Modeling** 495
- **Occupancy Models for Open Populations** 501
- **Dynamic Occupancy of the Adelgid in Massachusetts** 505
- **Estimating Population Size** 506
 - **Mark-Recapture: The Basic Model** 507
 - **Mark-Recapture Models for Open Populations** 516
 - **Occupancy Modeling and Mark-Recapture: Yet More Models** 518
- **Sampling for Occupancy and Abundance** 519
- **Software for Estimating Occupancy and Abundance** 521
- **Summary** 522

APPENDIX

Matrix Algebra for Ecologists 523

Glossary 535

Literature Cited 565

Index 583

©2012 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.