Contents

Acknowledgements viii

Introduction 1

Part I Philosophy and Science

1 **Philosophical Foundations** 7
 Science and philosophy 7
 Modern philosophy 10
 Conclusion 14

2 **Modern Philosophy, Modern Science and Its Methodology** 16
 Galileo, objectivity and mathematization of nature 16
 The search for universal laws and the unity of method 18
 Unity of science and reductionism 19
 Conclusion 20

3 **Category Volte-face: Organisms for Machines** 22
 What is mechanism? 22
 Ontological or category *volte-face* 23
 The category *volte-face* and the ideological goal of the new science 35
 Heidegger and science as theoretical technology 38
 Conclusion 39

4 **Machines and Reductionism** 41
 Engineering and reverse engineering 41
 Engineering, parts/wholes and reductionism 43
 Conclusion 46

5 **Organism a Machine** 47
 The first agricultural revolution 47
 The first scientific agricultural revolution:
 classical Mendelian genetics and its technology 49
 The second scientific agricultural revolution:
 molecular genetics and its technology 54
 Theoretical biology and philosophy 55
 Conclusion 59
Part II Philosophy and Medicine

6 Human Organism is Machine: MEDICINE 63
 MEDICINE as ENGINEERING, Medicine as engineering 64
 Medicine and human-is-machine 66
 Conclusion 69

7 Biomedicine: Some Sciences 70
 Biomedicine 70
 Biomedicine: cleavage between its sciences
 and its therapies in the long early stage 72
 Biomedicine: some sciences 74
 Conclusion 84

8 Biomedicine: Some Technologies 85
 “Deeper” theories, “deeper” technologies and
 increasing degrees of control 85
 Surgery 89
 Pharmacology 92
 Conclusion 112

Part III Causality and Disease

9 Nosology: The Monogenic Conception of Disease 115
 What is nosology? 115
 Prestigious status of infectious causal agents 117
 Monogenic conception of disease 120
 Postulate 1 and the monogenic conception of disease 123
 Conclusion 131

10 Linear Causality and the Monogenic Conception
 of Disease 132
 Humean roots 132
 Some anomalies 134
 “The cause” in different contexts 137
 Conclusion 139

11 Determining “the Cause”: Controllability and
 Random Controlled Trials 141
 Controllability/eliminability 141
 Random Controlled Trial (RCT) 148
 Conclusion 156
12 Epidemiology: “Cinderella” Status?
What kind of science is it really? 158
Is it revolutionary or sub-standard science? 158
Causation: multi-factorial 162
Non-linear causation and post-postmodern ecosystemic science 165
Epidemiology and controllability 171
Conclusion 173
Conclusion 175

Notes 178

References and Selected Bibliography 215
Index 227
Introduction

This book about the philosophy of modern medicine\(^1\) is written within the broad parameters of the framework as set out below:

1. Such a medicine is scientific medicine; as such it can only be understood as part of modern science.
2. The beginnings of such a medicine\(^2\) may be dated to at least the seventeenth century just as modern science itself may similarly be dated.
3. Modern science cannot be understood in a vacuum without tracing it back to modern philosophy in which it is embedded.

The book explores in detail the implications of the three theses outlined above, establishing that the major characteristics of such a medicine as well as such a science follow more or less directly from their philosophical foundation and source.\(^3\) Thus it is not an accident that modern medicine is atomistic, reductionist, mechanistic as well as technology-oriented as the philosophical worldview from which it follows is bounded by the same parameters.

Part I contains five chapters. These together set out the philosophical foundations of modern science as well as, therefore, modern medicine, in order to display why the latter possesses the features it does exhibit:

- Chapter 1 shows the intimate link between science and philosophy in general, and between modern science and modern philosophy in particular.
- Chapter 2 argues that every philosophy in which its science is embed- ded entails a methodology which that science follows – modern phi- losophy entails methodologically that modern science is objective/
quantifiable and reductionist in character. The imprimatur “science” in this tradition of science/philosophy would only be bestowed on data obtained using such methods.

- Chapter 3 explores, in the view of this author, one of the most radical philosophical ideas behind the modern scientific revolution. It is not the Copernican Revolution (whether narrowly or more broadly understood) but an ontological revolution – that is to say, the abandonment of the naturally-occurring mode of being for the artefactual mode of being. This profound change was prepared by (amongst others) Descartes and his dualist thinking which opens a space for modern science, as its remit is confined only to matter (not soul/mind). Furthermore, organisms (whether non-human or human) are made of inert matter, subject to the laws of physics (and later other sciences such as chemistry) only. This is combined with the ontological volte-face that the organism is an artefact; more precisely, it is a particular type of artefact – a machine. Such a philosophical perspective is called mechanism, or the mechanistic world-view. Such a world-view entails reductionism: that the whole is no more than the sum of its parts, that once the parts have been explained, the whole has been explained without residue. At the same time, such a perspective has built into it the privileging of homo faber (over homo cogitans, Descartes notwithstanding) who manipulates, controls and transforms nature to suit their wishes and goals. Science is to provide the theoretical basis for generating technologies suitable for achieving this ideological goal, which prompts Heidegger to call science Theoretical Technology.

- Chapter 4 explores the notion of machines as Engineering, which will then show in greater detail why reductionism is entailed by the axiom that the body-is-machine.

- Chapter 5 examines in some detail the ontological volte-face of organism-is-machine by looking at the relationship between theoretical biology and philosophy as well as at the technologies engendered by the great discoveries of Mendelian genetics and molecular genetics/biology underpinning the two scientific agricultural/medical revolutions of the twentieth century.

Part II has three chapters which, in the light of Part I, explore in some detail the nature of modern medicine:

- Chapter 6 looks at, in general, the implications of the axiom that the body-is-machine for modern medicine. In particular, it looks at
the implications of Engineering and engineering for Medicine and medicine.

- Chapter 7 shows that a temporal cleavage exists between basic medical sciences and therapies (mirroring a similar cleavage between theoretical science and technology in general); it argues why anatomy is the first medical science to be established, then followed by physiology. It also shows that medical technologies are necessarily and increasingly high tech in character, as they alone can give us more precise, more finely quantitative, more directly accessible data via machines.

- Chapter 8 demonstrates that medical technologies increasingly intervene at a deeper and deeper level of matter in tandem with the deeper and deeper levels of theoretical understanding of matter. It also looks at two specific forms of technological intervention, namely, surgery and pharmacology to show in particular that the former manifests in a more or less literal fashion that body-is-machine while showing that the latter displays the reductionist character in its various stages of development and design. Furthermore, it examines psychopharmacology to expose the precise philosophical framework within which it operates. It argues that the philosophical framework in question is epiphenomenalism (that matter can affect mind, but not mind matter). However, epiphenomenalism cannot make sense of the placebo effect; the most recent research shows that there is more to the placebo effect than meets the eye. This new understanding has resulted in the emergence of a new philosophical perspective which appears in turn to have the effect of challenging the philosophical as well as the methodological foundations of modern medicine itself.

Part III has four chapters:

- Chapter 9 looks at a sub-conception of the aetiological definition of disease, namely, the infectious-agent model of the monogenic approach. It looks at the reasons for its ascendancy since its emergence in the late nineteenth century, its continuing success as a progressive research programme (even today, a hundred years later); at the same time, however, it also looks at the anomalies which such a programme has to confront and the ways it has adopted to cope with them.

- Chapter 10 explores the causal model behind the infectious-agent monogenic conception to show that it is mono-fatorial, linear and Humean in derivation. It sets out both its strengths and its
Philosophical Foundations of Modern Medicine

weaknesses. It distinguishes between three different contexts: (a) explanatory/scientific, (b) attributive, (c) clinical. From the first perspective, the chapter argues that no factor could be singled out as “the cause” as each of the relevant factors which may be identified, each on its own, is neither necessary nor sufficient – all the identified factors form a complex set of sufficient (“inus”) conditions. On the other hand, from the second and third perspectives, it is legitimate for doctors to single out one of these “inus” conditions as “the cause”. In the light of such a critical assessment, it is plausible to argue that the monogenic conception of disease be regarded as a methodological guideline in medical research about what factor(s) may count as cause(s) in diseases, rather than enunciating in a straight-forward fashion the empirical discovery of “the cause” of disease.

• Chapter 11 explores, in some detail, two attempts in the context of clinical medicine to articulate “the cause” of a disease, namely, the criterion of controllability/eliminability and the notion of the Random Controlled Trial (RCT). It argues that these two are closely related as the former’s understanding of cause is implicated in the latter; that they both are involved in the notion of experiment; that Mill’s methods, in the main, set out the logic of such experimentation; and that this sense of cause is what Collingwood calls Sense II.

• Chapter 12 examines a very different tradition, alongside the monogenic conception of disease, in the history of modern medicine which is embodied in the theory and practice of epidemiology. As its metaphysics is not atomistic but holist, its methodology is not reductionist; the notion of cause it deploys is multi-factorial and reciprocal or “ecosystemic”. One could argue it is “revolutionary” science (whereas at the beginning of the twenty-first century, the infectious-agent model of disease may be said to be “normal” science). However, no Nobel award has been bestowed on the subject and its leading practitioner(s). This chapter attempts to make a case for saying that this may be a sadly-missed opportunity, as the “ecosystemic” kind of science shows signs of being the science of this new century.
Index

abnormal/normal, 111, 116, 135
see also attributive context
anatomy, 3, 65, 74–77, 84, 86, 90–91, 116, 118, 175, 191, 197
see also Engineering, Medicine
Aristotle, 9, 13–14, 16–17, 26–27, 41, 44, 56, 147, 179, 192, 214, 223
Aristotelian, 31, 146, 175, 216
Aristotelianism, 12–13, 15, 17, 77, 179, 192
four causes (efficient, final, formal, material), 14, 26–27, 41, 44, 56
artefact, 2, 14, 26–28, 44, 47, 57–58, 64, 175, 182
see also artefactual/naturally-occurring mode of being, biotic artefact, machine
see also ontological/category volte-face, ontological foil
atomism/atomistic, 1, 4, 158, 165, 169–70, 174, 176, 181, 183, 213
attributive context, 4, 138–39, 141
see also clinical medicine: clinical context, explanatory context
autopoietic machines, 34, 56, 58–59
see also machines, man-is-machine, Maturana and Varela, theoretical biology and philosophy
Baltimore, 55, 217, 220–21, 224
see also reductionism
Bernard, 77–81, 192–93, 215, 218, 222–23
see also indeterminism/
determinism, physiology, vitalism
see also modern medicine
biotechnology, 42–43, 54–55, 58–59, 64, 81, 186–87
see also DNA genetics, molecular biology
biotic artefact, 53, 64
see also biotechnology, DNA genetics, first agricultural revolution, first scientific agricultural revolution, Mendelian genetics, second scientific agricultural revolution
Boyle, 72, 183, 211
Bradford Hill, 159, 209, 210, 211, 215
see also Doll, epidemiology
Carnot, 72
see also Stephenson
Cartesian, 30, 63, 70, 76, 99, 101–4, 108, 110, 183, 185, 192, 203
see also Descartes, dualism
category mistake, 24, 45, 185
see also Ryle
see also controllability/
eliminability, ecosystemic notion of cause, mono-factorial causation, multi-factorial causation, necessary condition, reciprocal notion of cause, sufficient condition, triangle of causation, wheel of causation
Index

Chain, 118
see also Fleming, Florey, penicillin

Classical Chinese Medicine, 219
see also ecosystemic notion of cause/science

clinical context, 4, 139
see also attributive context, explanatory context

Collingwood, 4, 146–47, 155–56, 165, 177, 209, 216
Sense II of cause, 4, 146–47, 156, 165, 177
see also controllability/eliminability
Sense III of cause, 155, 165, 177

Comte, 11, 13, 36, 179, 216
see also Hobbes, positivism-cum-empiricism

control, two senses of
strong, 36, 49, 88, 184
weak, 36, 68, 88, 184

controllability/eliminability (as criterion of cause), 4, 130, 139, 141–43, 145–47, 151–52, 155–56, 162, 165, 171, 177
controlled experiment, 152–53
see also experiment, Random
Controlled Trial

Copernican Revolution, 2

Crick and Watson, 19, 54, 119
see also biotechnology, DNA genetics, molecular biology, second scientific agricultural revolution

de la Mettrie, 32
see also man-is-machine
deeper technologies/deeper theories,
3, 53–54, 64, 85–89, 112, 190
see also control, control (two senses of), ideological goal of science

see also Cartesian, dualism

Dijksterhuis, 22, 217
DNA genetics, 42, 74, 84, 142
see also Crick and Watson, molecular biology, molecular; genetics

DNA sequences, 42, 68, 93, 95

Doll, 159–60, 168, 172–73, 211–12
see also Bradford Hill, epidemiology
dualism, 30, 70, 76, 99, 103–4, 108, 110, 175, 185, 203
see also Cartesian, Descartes, modern/new philosophy

ecology, 11, 166, 168, 170, 212
ecosystem, 166–67, 170, 213
ecosystemic notion of cause/science,
see also multi-factorial causation, non-linear causation, reciprocal notion of cause, triangle of causation, wheel of causation

Ehrlich, 94, 96–98, 118
see also pharmacology

Einstein/Einsteinian, 36–37, 161
Engineering, 2–3, 41–43, 46, 55, 64, 91, 112, 221
see also category/ontological volte-face, man-is-machine, Medicine

see also Bradford Hill, Doll, ecosystemic notion of cause, multi-factorial causation, Nobel Prize Committee, reciprocal notion of cause, triangle of causation, wheel of causation

epiphenomenalism, 3, 103–4, 108, 176, 200
see also dualism
epistemology, 8, 11, 17, 21, 23–24, 173, 175
see also ethics, logic, metaphysics, modern philosophy, values
ethics, 8, 179
see also epistemology, logic, metaphysics, modern philosophy, values
experiment, 4, 18, 39, 51–52, 75, 78, 80, 83, 123, 125, 141, 148–49, 152–57, 171–72, 192, 200, 206, 213
see also controlled experiment, Mill, Random Controlled Trial
explanatory context, 4, 14, 16, 57, 85, 110, 137, 139, 141, 147, 162, 164–65, 175, 177, 203, 209
see also attributive context, clinical medicine, clinical context
first agricultural revolution, 47–48
first scientific agricultural revolution, 47, 49
see also Mendel
Fleming, 118, 143, 216
see also Chain, Florey, penicillin
Florey, 118
see also Chain, Fleming, penicillin
Galéon/Galenic, 31, 74, 75, 117, 120
Galileo, 16–17, 21–22, 30–31, 39, 78, 179, 184
see also mathematization/quantification of nature
Gassendi, 29
gene therapy
germ-line and somatic, 82
Harvey, 74, 192, 217
Heidegger, 2, 38, 63, 218, 225
see also Theoretical Technology
see also Marshall and Warren, peptic ulcer disease/PUD/PUD
Hippocrates/Hippocratic, 73, 90, 117, 120, 191
Hobbes, 29, 179, 183, 185
see also Comte, positivism-cum-empiricism
holism/holist, 4, 46, 170–71, 174, 176, 181, 185
see also parts, wholes
Human Genome Project, 82, 147
see also DNA genetics, SNPs
Hume/Humean notion of cause, 3, 103, 132–33, 139, 152, 162, 165, 176, 180, 209
see also linear causation, monofactorial causation
ideological goal of science, 59
see also control (two senses of)
indeterminism/determinism, 80
see also Bernard, physiology, vitalism
see also monogenic conception of disease
in us conditions as cause, 4, 137–39, 142, 145, 147, 151, 155, 157, 165, 177
see also Mackie
Jonas, 39, 218
see also Heidegger, Theoretical Technology
Henle-Koch Postulates, 121–23, 130–32
see also infectious-agent theory of disease, monogenic conception of disease
Kraepelin, 99–100, 199, 221
Kuhn, 158, 160–61, 174, 212, 219
see also Lakatos, normal science, paradigm, revolutionary science
Laennec, 67, 190
Lakatos, 120, 206, 208, 212, 219
see also Kuhn, paradigm
Lavoisier, 72
230 Index

Lind, 148
linear causation, 3, 132–34, 136, 162, 165, 174, 176, 180
see also Hume/Humean notion
of cause, mono-factorial
causation, non-linear causation
Lister, 91, 221
Locke, 92, 179–80, 210
logic, 4, 8–10, 18–19, 21, 44–45, 141, 179–80, 185, 209
see also epistemology, ethics,
metaphysics, modern
philosophy, values
see also autopoietic machine,
man-is-machine, mechanism,
reductionism, watch
Mackie, 137, 147, 155, 177, 209, 220
see also inus conditions as cause
Magendie, 93
man/human/organism-is-machine, 2, 59, 66, 81, 91–2, 154
Marshall, 206–7
Marshall and Warren, 118, 119, 120, 122–24, 126, 128, 144, 160, 177
see also Koch, monogenic
conception of disease, Nobel
Prize Committee, peptic ulcer
disease/PUD/PUD
see also man-is-machine,
mechanism, reductionism
mathematization/quantification of
nature, 14, 16, 21, 51, 72, 75
see also Galileo
Maturana and Varela, 34, 55–58, 187, 220, 224
see also autopoietic machines,
theoretical biology and
philosophy
mechanism/mechanistic, 1–2, 22, 25, 79, 183, 203
see also Engineering, machines,
man-is-machine, Medicine,
parts, reductionism
Medicine, 3, 66
see also category/ontological volte-
face, Engineering, man-is-
machine
Mendel, 49–52, 161, 186, 194, 221
Mendelian genetics, 2, 49, 52–4, 86–7, 119, 142, 161, 186
see also first scientific agricultural
revolution
metaphysics, 4, 8–9, 11, 13, 21, 23–24, 41, 74, 80, 99, 158, 170, 175–76, 181, 185
abusive sense, 13, 45
see also epistemology, ethics,
logic, modern philosophy,
values
Mill, 4, 18, 141, 153–55, 211, 221
methods of agreement and
difference, 153–54
see also controlled experiment,
Random Controlled Trial
modern medicine, 1–4, 7, 30, 47, 63, 70, 96, 175, 178, 208
see also biomedicine
see also Descartes, dualism,
machine, man-is-machine,
modern/new science
see also Descartes, dualism,
machine, man-is-machine,
modern/new philosophy
Moerman, 108–10, 190, 200–3, 221
see also dualism,
epiphenomenalism, placebo
effect
genetics, 2, 54–55, 59, 64, 71, 86, 89, 161, 187
see also biotechnology, Crick and Watson, DNA genetics
mono-factorial causation, 3, 132–35, 162, 163, 174, 176, 180
see also infectious-agent theory of disease, monogenic conception of disease, multi-factorial causation
see also Henle/Koch’s Postulates; Koch, mono-factorial causation
multi-factorial causation, 4, 123, 134, 162, 168, 174, 176
see also ecosystemic notion of cause, epidemiology, mono-factorial causation, reciprocal notion of cause, triangle of causation, wheel of causation
Mumford, 28–29, 182, 186, 221

nanomedicine, 95, 198
necessary condition, 124–26, 128, 156
see also cause, sufficient condition
new methodology in science and medicine
see deeper technologies/deeper theories, Descartes, dualism, linear causation, machine, man-is-machine, mechanism, modern/new philosophy, modern/new science, parts, reductionism, whole
Newton, 9, 22, 72, 183, 198
see also Bradford Hill, Doll, epidemiology, infectious-agent theory of disease, Koch, monogenic conception of disease, Warren and Marshall
non-linear causation, 162, 165–66, 174, 176
see also ecosystemic notion of cause, linear causation, reciprocal notion of cause
normal science, 158, 161
see also Kuhn, Lakatos, paradigm, revolutionary science
objective/subjective, 1, 10, 16, 31, 69, 75, 105, 109, 115–16, 149, 191, 203
ontology, 24–25, 47, 79, 86, 171, 175
ontological/category volte-face, 2, 23, 25, 28–29, 63, 69–70, 76, 92, 154, 182
ontological foil, 27, 35, 189
see also artefactual/naturally-occurring mode of being
ontological revolution, 2
Paley, 34, 222
see also watch
Paracelsian/Paracelsus, 92, 96–98, 112
see also pharmacology
paradigm/paradigm shift, 120, 160–61, 171, 174, 187, 212
see also Kuhn, Lakatos, revolutionary science
Paré, 90, 91
see also surgery
see also atomism, Engineering, machines, man-is-machine, mechanism, Medicine, reductionism, wholes
Pasteur, 78–79, 117–18, 121, 143, 177, 197, 221–22
see also infectious-agent theory of disease, Koch, monogenic conception of disease
Pelletier, 93
penicillin, 118, 143, 150, 205
see also Chain, Florey, Fleming

see also infectious-agent theory of disease, Marshall and Warren, monogenic conception of disease, Nobel Prize Committee

person, 8, 11, 28, 81, 99–100, 102, 110, 112, 124, 133, 136, 146, 162, 167, 178, 183, 203–4, 206

see also epiphenomenalism, Strawson

pharmacogenomics, 83–84, 95

see also Human Genome Project, SNPs

pharmacology, 3, 65, 83, 85, 92–96, 98, 104, 112, 175, 199

see also Paracelsian

physiology, 3, 7, 19, 65, 71, 74, 77, 80–1, 84, 118–19, 189, 191, 197

see also Bernard, indeterminism/determinism, vitalism

placebo effect, 3, 93, 104–12, 144, 149, 176, 194, 200–3, 218–19

see also epiphenomenalism, Moeran, person, Strawson

Plato/Platonic, 16–17, 173, 179, 183, 185

Popper, 78, 180, 192, 210, 222, 224

positivism-cum-empiricism, 11, 16

see also Comte, Hobbes, unity of method and unity of science

pre-modern therapies

leeching, 74

venesection, 74, 118, 190–91, 195

psychopharmacologic/

psychopharmacology, 3, 93, 100–4, 199

see also dualism, epiphenomenalism

see also repeatability as criterion of scientificity, SNPs

reciprocal notion of cause, 4, 165–68, 174, 176

see also ecosystemic notion of cause, triangle of causation, wheel of causation

see also Engineering, machine, man-is-machine, mechanism, Medicine, modern/new philosophy, modern/new science, new methodology in science and medicine

repeatability as criterion of scientificity, 80, 84, 176

see also Random Controlled Trial, SNPs

revolutionary science, 158, 161, 174

see also Kuhn, Lakatos, normal science, paradigm

Ryle, 45, 185

see also category mistake

second scientific agricultural revolution, 47, 54

see also biotechnology, Crick and Watson, DNA genetics

Semmelweis, 148, 151

Snow, 151–54, 168, 172

see also epidemiology

SNPs, 82–83, 95, 176

see also Human Genome Project, repeatability as criterion of scientificity

solid medicine, 120

Stephenson, 72

see also Carnot

Strawson, 204, 223

see also dualism, epiphenomenalism, person, psychopharmacologic/psychopharmacology

sufficient condition, 58, 124–26, 130, 134–35, 207, 209

see also cause, necessary condition

surgery, 3, 66, 85, 90–92, 118–19, 148, 175, 191, 196–97, 205

see also Engineering, Medicine, Paré
technology
craft-based, 27, 42, 48–49, 67, 72, 161, 190
science-generated/led, 27, 72, 74
see also deeper technologies/deeper theories
theology, 7, 13, 30, 33, 99
see also machine, ontological/category volte-face
theoretical biology and philosophy, 2
see also Maturana and Varela
Theoretical Technology, 2, 39, 63
see also Heidegger, Jonas
triangle of causation, 162–64
see also ecosystemic notion of cause, epidemiology, multifactorial causation, non-linear causation, reciprocal notion of cause, wheel of causation

unity of method and unity of science, 18–19, 21
see also positivism-cum-empiricism

values, 8, 10–11, 65, 81, 179
see also ethics

Vesalius, 75, 77, 90
see also anatomy, Engineering, Medicine
vitalism, 56, 79–80, 193
see also Bernard, indeterminism/determinism

watch, 32, 34, 44, 92, 185
see also Engineering, machine, man-is-machine, ontological/category volte-face
wheel of causation, 164, 170
see also ecosystemic notion of cause, epidemiology, multifactorial causation, reciprocal notion of cause, triangle of causation
see also atomism, ecosystem, Engineering, holism, machines, man-is-machine, mechanism, Medicine, parts, reductionism