Contents

List of Tables and Figures ix
Preface xi
Acknowledgements xxxvii
Notes on Contributors xl
List of Abbreviations li

Part I The Place of Conversation/Discourse Analysis in Child Mental Health

1 The Value of Conversation Analysis for the Study of Children’s Mental Health
Alessandra Fasulo 3

2 The Value of Conversation Analysis: A Child Psychiatrist’s Perspective
Khalid Karim 25

3 The Value of Discourse Analysis: A Clinical Psychologist’s View
Nikki Kiyimba 42

4 Looking or Spotting: A Conversation Analytic Perspective on Interaction between a Humanoid Robot, a Co-present Adult, and a Child with an ASC
Paul Dickerson and Ben Robins 59

5 ADHD: Three Competing Discourses
Adam Rafalovich 79

Part II A Critical Approach to Child Mental Health

6 Discourses on Children’s Mental Health: A Critical Review
Tom Strong and Monica Sesma-Vazquez 99

7 Child Mental Health: A Discourse Community
Stephen Gilson and Elizabeth DePoy 117

8 The Social Construction of Attention Deficit Hyperactivity Disorder
Sami Timimi and Lewis Timimi 139
Contents

9 Moral Evaluations in Repertoires of ADHD 158
Mary Horton-Salway and Alison Davies

10 Leaving Melancholia: Disruptive Mood Dysregulation Disorder 175
Valerie Harwood

11 Why Does a Systemic Psychotherapy ‘Work’? 194
Sim Roy-Chowdhury

Part III The Social Construction of Normal/Abnormal

12 Red Flags: The Social Construction of a Symptom 217
David C. Giles

13 The Production of the ‘Normal Child’: Exploring Co-constructions of Parents, Children, and Therapists 233
Charlotte Brownlow and Andrea Lamont-Mills

14 Should Autism Be Classified as a Mental Illness/Disability? Evidence from Empirical Work 252
Michelle O’Reilly, Khalid Karim, and Jessica Nina Lester

15 Subjectivity in Autistic Language: Insights on Pronoun Atypicality from Three Case Studies 272
Laura Sterponi, Kenton de Kirby, and Jennifer Shankey

16 Normative Development and the Autistic Child 296
Lindsay O’Dell and Charlotte Brownlow

Part IV Situating and Exploring Child Mental Health Difficulties

17 A Conversation Analysis of the Problem Presentation Phase of Initial Assessment Appointments in a Child and Adolescent Mental Health Service 313
Victoria Stafford and Khalid Karim

18 The Discursive Construction of Problem Behaviours of Children with Autism in Therapy 332
Jessica Nina Lester and Michelle O’Reilly

19 Name-Calling by a Child with Asperger’s Syndrome 350
Johanna Rendle-Short, Ray Wilkinson, and Susan Danby

20 Attachment Processes and Eating Disorders in Families: Research and Clinical Implications 367
Rudi Dallos and Sarah Pitt
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Using Discourse Analysis to Study Online Forums for Young People Who Self-Harm
Janet Smithson</td>
<td>384</td>
</tr>
<tr>
<td>22</td>
<td>Using Conversation Analysis for Understanding Children’s Talk about Traumatic Events
Amanda Bateman, Susan Danby, and Justine Howard</td>
<td>402</td>
</tr>
<tr>
<td>23</td>
<td>Food, Eating, and ‘Eating Disorders’: Analysing Adolescents’ Discourse
Maxine Woolhouse and Katy Day</td>
<td>422</td>
</tr>
<tr>
<td>Part V Managing Problem Behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Presuming Communicative Competence with Children with Autism: A Discourse Analysis of the Rhetoric of Communication Privilege
Jessica Nina Lester</td>
<td>441</td>
</tr>
<tr>
<td>25</td>
<td>Parents’ Resources for Facilitating the Activities of Children with Autism at Home
Monica Ramey and John Rae</td>
<td>459</td>
</tr>
<tr>
<td>26</td>
<td>Managing and Normalising Emotions and Behaviour: A Conversation Analytic Study of ADHD Coaching
Louise Bradley and Carly W. Butler</td>
<td>480</td>
</tr>
<tr>
<td>27</td>
<td>Interlocutor Influence on the Communication Behaviours Associated with Selective Mutism
Hanna Schäfer and Tom Muskett</td>
<td>500</td>
</tr>
<tr>
<td>28</td>
<td>‘I’m Happy with Who I Am’: A Discursive Analysis of the Self-Characterisation Practices of Boys in ‘Behaviour’ Schools
Linda J. Graham</td>
<td>519</td>
</tr>
<tr>
<td>Part VI Child Mental Health Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Therapeutic Vision: Eliciting Talk about Feelings in Child Counselling for Family Separation
Ian Hutchby</td>
<td>541</td>
</tr>
<tr>
<td>30</td>
<td>Parents’ Resistance of Anticipated Blame through Alignment Strategies: A Discursive Argument for Temporary Exclusion of Children from Family Therapy
Nikki Kiyimba and Michelle O’Reilly</td>
<td>559</td>
</tr>
</tbody>
</table>
viii Contents

31 Parentification: Counselling Talk on a Helpline for Children and Young People 578
Susan Danby, Jakob Cromdal, Johanna Rendle-Short, Carly W. Butler, Karin Osvaldsson, and Michael Emmison

32 ‘And You? What Do You Think Then?’ Taking Care of Thought and Reasoning in Intellectual Disability 597
Marilena Fatigante, Saverio Bafaro, and Margherita Orsolini

33 ‘You Just Have to Be Cheerful Really’: Children’s Accounts of Ordinariness in Trauma Recovery Talk 618
Joyce Lamerichs, Eva Alisic, and Marca Schasfoort

Glossary 636
Index 642
1
The Value of Conversation Analysis for the Study of Children’s Mental Health

Alessandra Fasulo

Introduction

Children’s mental health is a growing concern for both healthcare institutions and academic research, driven by the recognition that mental health issues also affect the younger members of society and that the incidence of these problems is increasing (www.mentalhealth.org.uk). Children’s mental health problems can include anxiety, conduct disorder, post-traumatic stress disorder, and depression; however, diagnoses are always advanced with caution as children are highly responsive to changes in their environment and their reactions can be extremely variable and fluid. Intellectual disabilities are also often considered under the umbrella of children’s mental health, partly because of the impact that the disability itself may have on the child’s psychological well-being. In the following, I will provide a review of research studies conducted within a conversation analysis (CA) framework across the whole range of children’s mental health and intellectual disabilities, trying to illustrate how and why CA can be a useful methodological approach for the study of these fields.

CA and the study of interaction

CA is a discipline that works at capturing and describing the details of social interaction. It was developed originally within sociology by Harvey Sacks and his colleagues as an inquiry into the coordination of social conduct; its focus is not language per se or the contents exchanged through talk, but how people know when to speak, what to say, and how to say it in relation to what the other speakers are doing.

Although it has developed a distinct set of methodological practices, CA is in the first place a theoretical approach to social interaction. It considers interaction as the site where ‘social facts’ – family, institutions, identities – are
produced; these are local and emergent accomplishments, and there is no set of formalised rules that can predict or direct the way people behave in situ. CA also assumes that talk-in-interaction is a separate system from written language and its grammar, but that, being highly ordered, it can be investigated for its systematic properties as well. The CA approach is now shared across the human and social sciences, with linguists, anthropologists, and, to a lesser extent, psychologists adopting this framework for the investigations of human conduct from their own disciplinary perspective (for a review of the relation of CA to different disciplines, see Sidnell & Stivers, 2012).

The strength of CA is that the analysis is rooted in what speakers themselves make of the talk of their fellow interactants; for the interpretation of a turn-at-talk, the analyst looks at the design and content of the successive conversational moves, which display the co-participants’ understanding of the previous ones (Sacks, 1992). This is a radical innovation compared to previous models for the analysis of language, most of which had looked at sentences in isolation and had tried to identify regularity in the way fixed grammatical structures mapped onto function (Maynard, 2012). On the contrary, CA has revealed that form alone cannot determine use (e.g. a question can be asked with a sentence in declarative form, i.e. a non-interrogative form, and sentences with interrogative form can be used for purposes other than asking, such as criticising; see Levinson, 1983); the position within a sequence of turns is what makes a certain form apt and its purpose clear, therefore the sequence is the unit the analyst has to consider.

Typically, CA starts with what has been called ‘unmotivated inquiry’, that is to say just searching through data for any new interactional phenomenon that might be there. As Sacks (1992) said, what is to be found in naturalistic interaction cannot be easily imagined, as our conscious representations of how language works have only a remote relationship with what actually happens. Evidence is collected through detailed analysis of sequences, considering all components, that is, words as well as any hearable sound, features of speech such as intonation and pace, silences, and gestures. These features then enter the analysis by means of a specific transcription notation (Jefferson, 2004). Single cases can be sufficient to illustrate a phenomenon; however, more often, after a practice is identified, a ‘collection’ of similar instances is gathered across different data sets of it in order to get a more secure grip on the phenomenon and its interpretation. Integral to this process is the practice of ‘data sessions’ in which a researcher shares data with other conversation analysts in a free discussion setting, so that alternative or divergent interpretations can arise.

CA relies on the fact that the main concern of participants in an interaction is to achieve intersubjectivity, namely to align their understandings of what is happening moment-by-moment and to fulfil each other’s
expectations about what is going to happen next. Speakers are accountable for failures in providing the conditions for intersubjectivity, and conversational practices are finely tuned to this necessity. Research has shown, for example, that turn-beginnings are shaped so as to facilitate the anticipation of what will come next, that speakers use a variety of techniques to smooth the turn transition, and that a spectrum of repair moves can be put in place when the alignment is lost (Atkinson & Heritage, 1984; Schegloff, 2007; ten Have, 1999). The characteristics of the CA approach described above represent a significant advantage in the study of people with communicative impairments or other forms of difficulties, as the analysis starts from the actual interaction and focuses on the resources participants draw upon to achieve intersubjectivity, independently of whether there are violations of given linguistic rules or the deployment of unusual communicative means.

The extensive knowledge developed in CA about the functioning of ordinary conversation has been used as a benchmark for the study of a variety of activity settings, including tribunals, schools, high-technology environments, healthcare, and psychotherapy (Antaki, Vehviläinen, & Leudar, 2008; Heath & Luff, 2000; Heritage & Clayman, 2011; Llewellyn & Hindmarsh, 2010). Comparing practices found in specific institutions or groups with analogous ones used in ordinary conversation (Drew, 2003) helps understanding core aspects of those social settings and possible sources of tensions and misunderstandings and it can therefore be particularly useful for the study of institutions and settings involving children with difficulties.

Conversation Analysis of children’s interaction

CA looks at interactions involving children with the same unpresuming gaze it bestows on conversations with adult participants: in other words, what qualifies an interaction as specifically parent–child or child–child should be apparent in the features of the interaction itself (Forrester, 2010). Furthermore, developmental explanations for children’s ways of talking are not favoured over more contingent accounts of children’s situation and interests;¹ the analysis can show instead how the position and status of children are created through interactional practices in the family and other social environments.

Wootton (1997), studying family interactions around his young daughter between ages 1 and 3, illustrates how conversational competence is formed: the appearance of novel language practices in the child’s talk could mostly be related to her recent interactions with family members. As Wootton explains, ‘there is a predominant sense that the child is making developmental headway by actively assembling various orders of sense in the world to which she is being exposed’ (1997, p. 2). The general lesson of his series of studies on
this child is that children learn language as part of their means to operate successfully in their world and are therefore sifting and combining socio-cultural and linguistic competence as part of the same process; at the same time, the studies demonstrate that through conversational means children can adjust very quickly to different contexts and interactional formats. Another major finding of Wootton’s work is that children have a paramount interest in intersubjectivity, made dramatically visible by the daughter’s distress at not being understood by adults, whereas being able to participate in the social life around her and effectively direct the actions of others were major motivations for the child to engage and experiment with language.

Very recently, CA research has started to look at interactions with infants at a very early age (Berducci, 2010; Rączaszek-Leonardi, Nomikou, & Rohlfing, 2013). It has been long known from developmental studies that infant–caregiver exchanges rely on a turn-taking organisation since the first weeks after birth (Kaye & Brazelton, 1971), and that infants can be active participants in routine activities based on sequential patterns (Reddy, 2008; Trevarthen, 1979). By applying CA methodology and terminology to early interactions, researcher have now started to build a continuum with what we know of conversational organisation in general, shedding light on how intersubjectivity and the principles of sequentiality begin to be established in the first months of life.

On the whole, CA studies with children show that applying a rigorous sequential analysis to children’s spontaneous interaction gives access to their sense-making procedures and sheds light on behaviours that may otherwise seem unjustified and incomprehensible. This also creates a favourable terrain for the study of children with difficulties. In the following, I will review existing conversational research in four general domains relevant to the understanding of children and mental health. The first is the study of children’s communication per se, exploring not only how particular mental health conditions can affect speech but also what kind of interactional dynamics are generated around the perceived problem. The second domain concerns psychological assessment as the set of institutional practices devoted to defining a child’s mental health condition and/or disability. The third is the study of consultation and intervention settings, in which professionals interact with children according to different psychological theories and approaches. A fourth domain that will be discussed more briefly, as less interactional research has been done about it, is the conversational environment of children whose parents suffer from mental health conditions.

Interaction between children with difficulties and their caregivers

A main focus of conversational research in this area has been the study of conditions involving language impairments. Autism\(^2\) is probably the most
represented condition (as the chapters in this volume reveal; see e.g. Ramey & Rae, Chapter 25, this volume; Rendle-Short, Danby, & Wilkinson, Chapter 19, this volume) followed by Williams syndrome (Tarlin, Perkins, & Stojanovik, 2006), Down syndrome (Peskett & Wootton, 1985), and other types of linguistic or pragmatic impairment.

Research on clinical infants is still rather limited, but promising studies are looking into early differences in the behaviour of small children with a suspected diagnosis of autism: Esposito, Nakazawa, Venuti, and Bornstein (2013) found that the crying of 13-month-old infants with autism has shorter and fewer utterances (i.e. cry emissions between in-breaths) than those of typically developing children and is heard as expressing more distress; as infants’ cry utterances orient caregivers’ responses (Berducci, 2010), Esposito et al.’s findings support social learning hypotheses for at least part of the difficulties of children with autism, namely that initial altered behaviours can limit their opportunities of learning communicative and interactional skills (Trevarthen, Aitken, Papoudi, & Robarts, 1998).

A study by Wells, Corrin, and Local (2008) is a particularly good example of an interactional approach to the study of children with difficulties. The authors perform a phonetic analysis comparing the conversational prosody of a typically developing child, a child with specific language impairment, and a child with severe autism. By focusing on different aspects of prosody (design, placement, and focus), they are able to show that the child with autism, who had the most severe difficulties and was almost unintelligible, retained those prosodic features more conducive to successful turn-taking and ‘sacrificed’ the focus system which is less central (and, in fact, is not even present in all languages). As the authors say:

Because the method does not assume that unusual prosody is a direct reflex of an underlying processing deficit, it also enables the exploration of compensatory mechanisms.

(Wells et al., 2008, p. 149)

The passage above emphasises that the aim of this kind of research is neither to identify behaviours that may be caused by a faulty neurological substratum, nor to draw the dividing line between children with difficulties and their typically developing peers. By setting aside the deficit as the main focus, children’s unusual speech behaviours may be revealed as solutions to communicative obstacles rather than manifestation of the underlying condition.

The study also proves that it is worth considering children’s talk in its sequential context: widening the observational angle to include speech partners makes children’s verbal behaviour a lot easier to decipher, and helps identifying its interactional orientation. Research on echolalia in autism offers
ample evidence of this. Echoes, that is, repetitions of previously memorised content or formulaic phrases by children with autism, were interpreted as signs of withdrawal until sequential analyses showed that they actually indicate interactional engagement. Children with autism find it difficult to improvise newly formed utterances at the pace required by conversation, so they may use this type of talk to fill a conversational slot; by performing slight adjustments in form or prosody, they shape echoes into adaptive responses to the other’s turn (Local & Wootton, 1995; Sterponi & Shankey, 2014; Tarplee & Barrow, 1999; Wootton, 1999). The following extract shows such use of repetition for the achievement of ‘progressivity’ (Schegloff, 2007), namely a well-paced flow of turns between conversants. Aaron, a 5 years and 10 months old boy with high-functioning autism, is playing with his mother on the parents’ bed; at the bed’s bottom there is the blanket where they let their dog (Yachi) sit (the full sequence is analysed in Sterponi & Fasulo, 2010).

1 Mother: [OH MY GOD: LOOK what you did ((with mock terrified voice))
2 Aaron: Hehe [heh hehe hehuhe ((laughs))
3 Mother: [YOU GOT ON THE BAD BED ((tickling Aaron))
4 Aaron: Hehe hihi ((rolling on bed))
5 Mother: You’re gonna get bug bites. From Yachi.
6 Aaron: → He ↑huhu ((laughs)) (.) or else?
7 Mother: Or else you’re gonna be covered in bug bites ((tickling Aaron’s bare legs))
8 Aaron: Hehe hehu hehu ((laughs))
9 no seat on the [bug bed,
10 Mother: [Yach- Yachi’s bug blanket.
11 Aaron: → I’ll sit on Yachi’s bug bed or else?
12 Mother: You’re gonna get covered with bug bites. ((tickling Aaron’s legs))
13 Aaron: Ha ha ha ha hu ha ((laughs with pillow on mouth x))
15 you’ll be covered in bug bites.
16 Mother: Yeah.

In line 6, Aaron produces his characteristic echo, the question ‘or else’, in response to Mom’s playful scary scenario; the question gives the floor back to her and acts as an invitation to go on playing. She takes up the invitation and continues with a variant of the former menacing line. The boy laughs again and starts proffering a kind of prohibition, partially repeating what his mother had said in a previous turn (line 9). The mother then completes Aaron’s turn in overlap and the boy picks up her words to construct a future event, to which he attaches again the question ‘or else’ (line 11). The formulaic question appears
effective one more time in making his mother continue playing: she tickles him and reiterates the bug line, making Aaron laugh and repeat her threat (lines 14–15).

Even in this brief sequence, it is apparent that the child is fully engaged in the interaction and mobilises the resources he has available to keep the exchange going: questions have the advantage of giving the floor back to the other speaker (Sacks, Schegloff, & Jefferson, 1974) while fulfilling one’s interactional duty. A question like ‘or else’ is not very specific, so it can be bent for use in a wide variety of conversational contexts; furthermore, it may trigger jokes and invention in a complacent interlocutor. The formulaic, repetitive contribution of the child does signal that he has a problem, but the analysis shows that it is not a random nonsensical contribution.

Focusing on the functional aspects of children’s atypical communication might help build a new grammar for atypical language uses. Wootton (2002) poses the question of whether interactional approaches have the power to find independent explanations for the characteristics of a condition, different from those provided by deficit-oriented approaches. While this may only be ascertained in the future through prolonged and concerted efforts, research is already mapping alternative language structures and advancing hypotheses on how interactional problems can generate cumulative effects in children’s competence across the developmental trajectory. For example, Wootton himself (2002) suggests that the observed scarcity of initiations (conversational moves that open a new sequence) in ‘pragmatically unusual’ children deprives them of the information that can be gained through repairs and other type of responses about the adequacy of their turns. The atypically low frequency of initiations, whichever the cause, Wootton argues, may determine the more severe language impairments observed at later stages and that are often interpreted, instead, as directly caused by neurophysiological anomalies. In other words, exploring impaired communication in interaction and comparing atypical children behaviour with that of their typical counterparts – the comparative method being central to the CA approach – can build better theories on the nature of children’s problems and devise strategies to compensate for the lack of communicative experience children may suffer from.

Looking at children and caregivers’ interaction can help identifying ways of supporting children’s abilities. The mother we have just seen interacting with Aaron, for example, demonstrated good practices in letting go of linguistic norms in the production of turns and using language as an instrument for play, mirroring the son’s utterances and building up on his echoic contributions in a way that promoted his participation. Brouwer et al. (2011), looking at conversations between children with autism and Down syndrome and their parents, list three main types of positive parental verbal behaviour: ‘incorporation’ –
incorporating the action of the child in a subsequent one; ‘pursuance’ – pursuing a relevant action/response that has not yet been delivered by the child, and ‘go-along’ – going along with the trajectory that the action of the child suggests, whether or not it fits the specific conversational locus. Brouwer et al. argue that such practices should inform to a larger degree than they presently do the communication of professionals with children with difficulties, as well as that of parents.

In order to build support and provide for the enrichment of children’s communicative repertoires, interventions can also be directed to the peer group. Ochs, Kremer-Sadlik, Solomon, and Sirota (2001) compared peer interaction of autistic children in classrooms where classmates had received explanations on autism with interaction in classes where the classmates did not know about the child’s condition. In the first situation there were more episodes of positive inclusion, as well as fewer episodes of negative exchanges. Schuler (2003) reports that training classmates of autistic children to treat the latter conversational contributions as relevant resulted in a significant increase in the quality and quantity of adequate contributions, showing that facilitating engagement and ‘accepting’ autistic children’s talk can affect not only their motivation to interact within the peer group but also their actual level of competence. Observing with CA methods interventions which recruit children’s natural speech partners could provide a better understanding of the mechanisms through which the interventions work, and help improve them.

Interaction between children and professionals during assessment tasks

When caregivers suspect that a child is having difficulties, either in developmental pace or mental health, they are likely to seek specialist help to assess and diagnose the child’s problem. A psychological assessment will be then performed either through observation and dialogue or through standardised scales measuring performances on different behavioural and cognitive tasks.

It is important to evaluate the process whereby the outcomes of psychological assessments are generated, in that diagnostic definitions and test scores tend to ‘stay’ with the children. Assessment results set adults’ expectations on what the children can achieve and determine decisions about school placement or intervention. Moreover, test design and the utilisation of tests for creating or confirming diagnostic categories presuppose theories about what a condition is, what defines those who have it, and ultimately how the human psyche works.

The history of IQ (intelligence quotient) measures is a case in point. The IQ test was originally developed by Binet and Simon (1916) as a tool for teachers.
As the authors painstakingly repeat in their writings, it was not intended to measure a stable characteristic of the children but to capture their intellectual capabilities at a given moment in time, and independently from the contents of school learning. This was done so that teachers could devise the best strategies to improve children’s intelligence, which Binet also did not see as limited by innate dispositions. Famously, the IQ quickly came to be conceived of as a property of the individual (‘X has an IQ of ...’) and to contribute to a folk understanding of intelligence as a fixed genetic endowment.

Binet also saw his test as just one method among others to build a picture of a child’s intellectual level. He and his collaborators warned practitioners that test scores were not sufficient to understand a child’s capabilities and resources, and, writing about the errors an inexperienced assessor could commit, they stated:

[T]he first consists in recording the gross results [of the test] without making psychological observations, without noticing such little facts as permit one to give to the gross results their true value.

(Binet, Simon, & Town, 1913, p. 57)

Today, psychologists are trained to consider psychological assessments’ results as exhaustive, and not in need of additional ‘little facts’. Standardisation is the procedure that is supposed to guarantee the objectivity of results; however, as CA has shown and as we shall see later in the chapter, standardisation in testing and surveying is chimeric: even standardised systems depend on mutual adjustments and interactional negotiations to be completed (Antaki, 1999; Maynard, Houtkoop-Steenstra, Schaeffer, & van der Zouwen, 2002). What regularly happens, though, is that the ways in which interactional adjustments contribute to the assessment outcomes are ignored, and omitted from the final report or evaluation based on the assessments’ results.

The second aspect that makes tests and assessments worth studying is that they divulge scientific theories about mental health and disability, theories that will directly impact the way individuals – including the very people affected by these conditions – understand both the problem and themselves. The famous ‘false belief’ test, for example, is based on the psychological postulate of the existence of a ‘Theory of Mind’ behind the human capacity for intersubjectivity. In this test, children have to recognise the content of the mind of a character in an illustrated story (i.e. the character’s belief about the location of a toy) and correctly guess her action (she will look in the wrong place as she was not present when the toy was moved). Children with autism fail the tests significantly more often than children of comparable age. The consequent notion that autistic people lack a Theory of Mind (Baron-Cohen, 1996), and are therefore unable to understand how fellow humans think, has now become
common knowledge, influencing the social relations and identity of people with autism.

The ‘false belief’ test as such has not been analysed by conversation analysts, but critics of the paradigm have created variants of the experiment which show that children with autism can perform adequately, provided that they can use familiar objects, are given more time, or are made to do exercises for concentration before the test (Bara, Bucciarelli, & Colle, 2001). These findings raise questions about whether the performance in this test reflects autistic children’s deficit in understanding other minds or rather their problems with social anxiety, speed of verbal production, and concentration. Anyhow, it is clear that assessment environments are not transparent with respect to which abilities are effectively tested and that investigating the experimental setting they are administered in within an interactional framework could shed light on how their results come about.

Maynard and collaborators (Maynard, 2005; Maynard and Marlaire, 1992) have analysed two different assessments regularly administered to children with autism, with the aim of investigating ‘how participants make sense of the questions being asked’ (Maynard, 2005, p. 500). Maynard and Marlaire (1992) document the ‘interactional substrate’ upon which the assessments rest, showing the difficulties in maintaining standardised procedures and how interactional incidents might cause erroneous answers. For example, the professionals delivering the test (in this case a subtest of the Woodcock Johnson Psychoeducational Battery) were not supposed to give feedback but, across different clinicians, cues about the correctness of the answers were common. In an assessment situation, the authors argue, such involuntary feedback, and the fact that children generally monitor practitioners’ reaction after producing an answer, can create carry-over effects across different test trials, and also induce discouragement after failure, thus compromising the test’s validity. Carry-over effects are discussed by Maynard and Marlaire (1992, p. 194) in terms of ‘learning within the task’. While tests are supposed to measure pre-existing abilities, a good deal of learning seems to happen at the time of the examination itself:

> From within the interior of the exam experience, children and clinicians learn what they should do to give, receive, and answer test items properly and correctly.

(1992, p. 194)

In a different study, Maynard (2005) analysed the subtest ‘What do you when’ of the Brigance Diagnostic Inventory of Early Development and compared the required question–answer sequences to similar sequences in ordinary conversation. The questions in this subtest require giving solutions to hypothetical problematic scenarios. Here is a sequence involving Tony (TO), a
Index

accountability, 80, 158–9, 161, 244, 505, 564–5, 566, 570, 571, 574
accountable, 5, 161, 322, 429, 464, 470, 569, 571, 581
alignment, 5, 207, 239, 359, 559, 564–5, 569, 571, 573–4, 587, 603
disalignment, 564, 565–6
see also eating disorders
anxiety disorder, 3, 29, 176, 182, 187, 195, 500, 514, 518, 526
anxiety management, 154
social anxiety, 12
Ariés, Philips, 99, 111
Asperger, Hans, 253, 333, 442
assessment, 6, 10–12, 25, 31, 33, 45, 52, 56, 60–1, 73, 75, 102, 113–14, 121, 141, 147, 154, 157, 197, 205, 224, 234, 236, 246, 261, 282, 300–3, 305, 314–16, 327–9, 393, 457, 460, 480, 483, 485, 488–9, 491, 505–6, 513–17, 535, 542–3, 547, 584, 588, 597, 598, 602–3
initial assessments, 313–31
psychological assessment, 6, 10
Vygotskian framework for assessment, 600–1
attachment, 102, 107
adult attachment interview (AAI), 370, 374, 377
attachment difficulties/attachment disorder, 55
attachment history, 51
attachment processes, 367–83
attachment relationships, 51, 370
attachment strategies, 372–3
attachment theory, 368–70
relational attachment, 103
Attention Deficit Hyperactivity Disorder (ADHD/ADD), 14, 28, 79, 94–5, 113, 123, 136, 139–57, 158–174, 187, 218, 235, 446, 480, 497–8, 537, 563
Conner’s scale, 89
Aspies, 107–8, 226, 252, 337

642
Autism Diagnostic Observation Schedule (ADOS), 60, 76
triad of impairments, 229, 254, 298, 333–4

behavioural therapy, 28, 194, 404, 499
benchmark/benchmarking, 5, 233, 237–8, 240–1, 248
Billig, Michael, 34, 39, 160, 166, 170, 173–4, 197–8, 227, 265
biological repertoire, 162–5
blanket wrapping, 226–8
body distress, 423, 425, 427, 432
body modification, 423–4
Bowlby, John, 27, 39, 103–4, 111, 368, 369, 379
Bradley, Charles, 142, 154, 156, 520
bulimia, 422–3, 427–8, 430–1
see also eating disorders
capitalism, 121–2, 132, 136–8
Child and Adolescent Mental Health Services (CAMHS), 51, 194, 313–19, 322–3, 327–9, 389–90, 393
child psychiatry, 25–41, 95, 105, 145, 157, 479, 500, 517
child-centred, 103, 313–15, 327–9, 388, 404, 412
child-centred parenting, 103
the Children’s Society, 103, 115
clinical psychology, 19, 21, 42–58, 85, 112, 537, 575
Cognitive Behaviour Therapy, 28, 152, 194, 404
communicative competence, 441, 443–4, 455, 504
corrective scripts, 368, 370–2, 373, 374, 377, 379–81
depressive disorder, 175–7, 181–3, 185, 188, 190–1
disruptive mood dysregulation disorder, 175–93
major depressive disorder, 177
Dewey, John, 599
Dickens, Charles, 99, 112
biopsychosocial model of disability, 255, 356
disability studies, 22, 117, 255, 265, 305, 307
intellectual disability, 22, 169, 173, 339, 517, 597–617
disaffiliation, 575
discourse community, 117–19, 121–3, 125–32, 134–5
Discursive Action Model (DAM), 173, 408
eating disorders, 29, 182, 367–83, 384, 393, 422–8, 430–7
echolalia, 7, 21, 23, 274
emergency call centres, 409–11
evidence-based medicine, xiii, xix, 30–2, 41
Foucault, Michel, 82, 94, 101, 104, 106, 112–13, 120, 179–80, 188–90, 336, 520, 521, 536–7
Foucauldian, 219, 520–1, 523, 536
Freud, Sigmund, 27, 92, 104, 218
- transcription for gaze, 516
 genetic(s), xi, 11, 30, 140, 146, 149–51, 158, 163, 169, 255
gesture(s), 4, 62, 68, 189, 452, 455, 462, 466–9, 470, 473, 490
Glassman, 340–1, 343–5
see also unthinkables
half-membership, 15, 314, 326, 387
helplines, 14, 387, 408–11, 578–96
human robot interaction, 62
 humanoid robot, 59, 62, 74, 76–7
idiocy, 83–4, 94
idiographic, 620
imbecility, 83–6, 94–5
intelligence quotient (IQ), 10–11, 131, 597, 601
International Classification of Diseases (ICD), xii, 28, 107–8, 113, 252
interpretative repertoire, 158–61, 173, 236–7, 241, 249
intersubjectivity, 4–6, 11
Jefferson transcription, xvii–xviii, 4, 64, 77–78, 198, 236–7, 278, 318, 339, 373, 445, 462, 479, 482, 504, 562, 600, 622
joint attention, 77, 513, 514, 517
Kanner, Leo, 27, 40, 76, 253, 274, 333, 442, 456
Krippendorff, Klaus, 117
labelling model of disability, 256
labelling theory, 256
laughter, 70–2, 198, 239, 288, 343, 361, 362, 466, 469, 511, 517, 611, 612, 633
Levinson, Stephen, 4, 21
lexical
 lexical choices, 200–3, 207, 238, 241, 340, 342, 346
 lexical items, 332, 340, 346
mad (madness), 106, 113–14, 116, 120, 138, 179, 182–3, 185–6, 188–90, 522–3, 528, 552, 621
Marx, Karl, 82–3
Maynard, Doug, 4, 11, 12, 13, 477, 543, 547
medicine
 medical model, xvii, xviii, 50–2, 162, 255–7, 261, 306
 medical training, 29
 medication, 26, 45, 50, 80, 87–8, 90, 99, 106, 109, 123–5, 137, 140, 144, 145, 147, 148, 152–6, 160, 163–5, 169, 172, 565–6
 melancholia, 175, 179, 180–7, 190–1
 mental
 mental health problems/disorders, xi, xii, xiii, 3, 11, 25–9, 31, 45, 157, 171, 174, 313, 368, 411, 580

mental illness, xi, xii, 18, 26, 46, 92, 99, 100, 101, 102, 104–10, 117, 123, 127–9, 134, 217–18, 252–71, 385, 566

metaphor, 196, 210, 254, 459, 478–9, 490–1, 608

minimal brain dysfunction, 94, 143

mother-blaming, 107, 161–2, 174, 333, 367, 424–5

refrigerator mother, 301

see also blame

naming-calling, 350–66

narrative exposure therapy, 404, 405

neurotypical (neurologically typical), 259, 264, 274, 280, 306, 336, 360, 459

normal development, 233, 237, 241, 296–7, 300, 303, 305, 307

normal distribution, 130–1, 297, 302, 591, 592

normalisation, 240, 256, 300, 302, 308, 413

normative development, 119, 125–6, 226, 255, 405, 591

Obsessive Compulsive Disorder (OCD), 29, 319, 322, 324, 339, 446

online forums, 299, 300, 305, 307, 384–401, 409–11

Orestes, 175, 182–90

parentification, 39, 578–96

pathological, 92–3, 111, 121, 123, 163, 169, 217, 253, 258–9, 432, 442, 448–9, 456

perspective display, 542, 547–50, 556

Piaget, Jean, 233

political model of disability, 253, 256

post-positioned address terms, 354, 360

Post-Traumatic Stress Disorder (PTSD), 3, 92, 403, 405, 407, 412, 414

practice-based evidence, 51, 53

proffering, 8, 410, 491, 542, 549–52, 556, 558

progressivity, 8, 23, 408, 414, 518, 575, 619

pronoun atypicality, 272–3, 275, 278, 286, 291–2

prosody, 7–8, 23, 288, 334

pseudo-medicine, 119

psychoanalysis, 22, 24, 26–7, 47, 94

psychodynamic, 79–81, 87–8, 95, 560

randomised controlled trials (RCT), 25, 34, 194

RAPID techniques, 481–2, 495

representational systems, 370–2

Ritalin, 88, 90–1, 94, 143, 144, 174

robot, 59, 62–3, 74, 76–7

see also humanoid robot

Runswick-Cole, Katherine, 133, 136, 297, 306–7

Rutter, Michael, 31, 41, 76, 157, 274
vocal, 314, 470
vocal actions, 62
vocalisation, 313, 462, 465, 467, 469, 470, 477, 510, 511
vocal representation, 326
Vygotsky, Lev, 459, 461, 598, 599, 600–1

well-being (wellbeing), 3, 79, 81, 88, 100–3, 109–10, 121, 145, 154, 350, 351, 362–3, 381, 413, 481, 482, 579
Wooffitt, Robyn, 34, 166, 259, 543, 620
Wootton, Tony, 5–6, 7, 8, 9, 18, 351, 598
zone of proximal development, 459, 598