Contents

List of Figures
viii
List of Tables
x
Foreword
xii
Acknowledgements
xvi

Introduction: Resource-Seeking FDI: Birth, Decline and Resurgence
1
1. The Importance of Institutional Efficiency to Resource-Driven, FDI-Facilitated Development
7
2. Introducing the Resource-Rich Caribbean Countries
23
3. The Aluminium Value Chain
35
4. Upgrading in the Aluminium Value Chain and Resource-Driven, FDI-Facilitated Development
61
5. The Changing Fortunes of a Strategic Industry: The Bauxite Industry of Jamaica
75
101
7. Dependent Underdevelopment? The Aluminium MNEs and the Bauxite Industry of Suriname
125
8. Addendum: Embedded Autonomy and the Industrial Policy Process in the Twenty-First Century: Developing an Aluminium Industry in Trinidad and Tobago
149
9. Resource-Driven, FDI-Facilitated Development in CARICOM: Myth or Reality?
169
10. Conclusion
189

Appendix
199

Notes
213

Bibliography
233

Index
251
Introduction
Resource-Seeking FDI: Birth, Decline and Resurgence

As the industrialisation of the Western world proceeded in the nineteenth century, there was an increasing demand for additional or new sources of raw materials to those that were available locally. Concomitantly, innovations in the late nineteenth century resulted in the use of different kinds of minerals and materials – for example, oil, rubber and bauxite – than those required previously. Further, as income rose in advanced temperate countries, consumers began to demand tropically produced food and drink. These factors precipitated the emergence of the multinational enterprise (MNE) seeking to engage in resource-seeking foreign direct investment (FDI) (Dunning 1992). Indeed, the majority of the FDI carried out by MNEs from Europe and the United States during the nineteenth century focused on mining, agricultural and forestry activities in Australia, Canada and the developing countries (McKern 1993). Interestingly, several of the mineral and oil MNEs which currently dominate their respective industries, such as Rio Tinto, de Beers and Royal Dutch Shell, emerged during this period (Dunning 1992).

Not surprisingly, during this period, resource-rich developing countries accounted for a disproportionately high share of resource-seeking FDI globally. This period also witnessed the emergence of an international system of industrial organisation, which was greatly encouraged by colonial and other metropolitan powers: Limited processing of the exploited resources was undertaken in resource-rich developing countries. Instead, most of the higher value-added processing activities were performed in advanced industrialised countries. In fact, while the resource-seeking MNEs earned extraordinary profits from their operations in developing countries, their host countries were relegated to enjoying limited fiscal benefits from their activities (for example, Girvan 1967). However, this state of affairs was soon to be challenged.

By the 1960s, many resource-rich developing countries had attained political independence. Political independence was quickly followed by a quest for economic emancipation (for example, Moran 1974; Radetzki 1977; Shafer 1983; Wälde 1991). Resource-seeking FDI, especially petroleum
and non-fuel minerals, was perceived to be an encroachment on national sovereignty and an instrument of foreign domination. In addition, resource-seeking FDI was believed to lead to an excessive outflow of scarce foreign exchange, to impede industrial development and as a source of price distortions (Wålde 1991). Hence, these newly independent resource-rich developing countries sought to gain greater control of their non-renewable natural resources. Nationalisations, the formation of producer associations and restrictions, most characteristically expressed in Decision 24 of the Andean Pact of 1974, were the preferred tools used to achieve this objective (Wålde 1991). Consequently, the late 1960s and early 1970s were marked by a wave of nationalisation that swept throughout the resource-rich developing world (for example, Shafer 1983).

As the bargaining power of the resource-rich developing countries increased, the share of investment in the mineral industry allocated by the MNEs to developing countries plummeted from 20 per cent in 1970 to a mere 6 per cent in 1977 (Radetzki 1982). However, many governments in resource-rich developing countries quickly realised that state ownership of the resource sector was not the economic and social panacea they had expected. Indeed, with the exception of a few instances such as Venezuela’s C. V. G. Ferrominera Orinoco, the Copper Corporation of Chile and the Malaysia Mining Corporation, the nationalisation of the mining sector was unsuccessful (McKern 1993; Shafer 1983). By the 1980s, the movement towards nationalisation of the resource sector was reversed. The new emphasis was on private sector-led development of the resource sector. There were several reasons for this reversal: The debt burden of many resource-rich developing countries (Sohn 1988) and the collapse of commodity prices with the attendant decline in mining revenues and increased risks of state-owned mineral investments (Blitzer et al. 1984) all resulted in the inability of developing country governments to engage in a strategy of state ownership of the resource sector. Despite this, the 1990s witnessed a shrinking share of resource-seeking FDI in global FDI inflows with oil and metals now being treated as simple commodities (UNCTAD 2007). But this situation was not to last.

Resurgence in resource-seeking FDI and the rebirth of resource nationalism

The pendulum has swung. The revival of commodity prices that began in 2004 is driven by very strong growth coupled with initial supply constraints. However, unlike the nineteenth century, this growth is coming from developing countries, especially China, which is currently experiencing a resource-intensive growth process. Yet, like the earlier period, the resource-seeking MNE is currently earning extraordinary profits. During the period 2003–2012, the financial performance of the mining industry significantly outpaced the broader market. For example, from January to April 2013,
mining stocks increased by 235 per cent while the Dow Jones and the FSE 100 increased by 82 and 78 per cent, respectively (PwC 2013).

Significantly, resource nationalism has resurfaced. However, it has assumed a new form. The wave of resource nationalism which occurred in the late 1960s and early 1970s was limited to resource-rich developing countries. But resource nationalism in the twenty-first century embraces both ‘mining-friendly’ countries such as Australia and Canada and ‘frontier locations’ such as Indonesia and Vietnam (PwC 2013). These countries are currently changing their policies towards the resource-seeking MNE with the aim of increasing their share of the windfall revenues created by the commodity boom. To this end, they have increased taxes and royalties, restricted foreign ownership and in some locations – significantly those of resource-rich developing countries – engaged in beneficiation. South Africa, Indonesia, Brazil, the Democratic Republic of Congo and Vietnam have announced plans to require a form of in-country processing of their exploited resources (PwC 2013). As the second decade of the twenty-first century unfolds, these resource-rich developing countries are attempting to capture a greater share of the value chain by implementing policies of beneficiation.

More than two decades ago, Wålde (1991) prophesied that resource nationalism is likely to reappear as long as wealth and economic power are distributed unequally. This seems to be the present situation in several resource-rich developing countries, which are still consigned to the lower value-added segments of the value chain, enjoying limited fiscal benefits from the operations of the MNEs in their resource sector. However, the experience of the late 1960s and early 1970s demonstrates that nationalising the resource sector does not result in economic development. The issue is ensuring that resource-seeking FDI results in FDI-facilitated development.

This issue, which has continuously confounded policy makers in resource-rich developing countries, is the subject of this book. Its thesis, which draws on the work of Evans (1995), argues that resource-driven, FDI-facilitated development occurs when the industrial policy process is conducted in an institutional environment characterised by embedded autonomy. This is the institutional setting in which highly efficient and autonomous bifurcated bureaucracies are embedded with an entrepreneurial and capable private sector. This thesis is tested by examining the case of four resource-rich developing countries in the Caribbean Community (CARICOM).

This study examines the bauxite industry of Jamaica, Guyana and Suriname, and the proposed aluminium investments of Trinidad and Tobago. This book is the first of its kind to examine the issue of embedded autonomy for the resource sector of small, developing countries. The other works on this subject have focused on the manufacturing industry in Japan and the South East Asian newly industrialised countries (NICs) (for example, Johnson 1982; Amsden 1989; Wade 1990).
The organisation of the book

Following this Introduction, Chapter 1 links the literature on resource-seeking FDI and economic development with the concept of embedded autonomy. This is followed by Chapter 2, which introduces the four countries that are the focus of this study. In so doing, this chapter examines the political and socio-economic conditions prevailing in these countries over the last two decades. It also analyses the role that the resource sector has played in these economies over the same period. Chapter 3 uses the value chain framework to analyse the structure and dynamics of the international aluminium industry. Chapter 4 examines the issue of industrial upgrading in the value chain and links it to the concept of FDI-facilitated development. It also employs the value chain framework to articulate what constitutes FDI-facilitated development in the aluminium industry.

Chapters 5 to 8 are the case study chapters. They examine the extent to which resource-driven, FDI-facilitated development has occurred in the bauxite industry of Jamaica, Guyana and Suriname (Chapters 5 to 7) and in the proposed aluminium investments of Trinidad and Tobago (Chapter 8). Chapter 9 undertakes a comparative analysis of these four focus countries. Its main objective is to ascertain the extent to which the institutional framework they created for the industrial policy process has allowed them to achieve resource-driven, FDI-facilitated development.

Chapter 10 is the concluding chapter. It answers two questions that were posed at the conclusion of Chapter 9. These are:

1. Are the bauxite-rich CARICOM countries destined to remain passively incorporated in the international aluminium value chain?
2. Are they going to continuously deny themselves the privilege of reaping the maximum benefits of resource-seeking FDI?

In answering these questions, this chapter analyses the issues that the four focus countries and other resource-rich developing countries need to address when creating an institutional environment characterised by embedded autonomy.

Creating an institutional environment for resource-driven, FDI-facilitated development in small resource-rich developing countries: Lessons learnt

This study highlights the idiosyncratic nature of embedded autonomy. This institutional framework operated with relatively efficacy in Japan and the South East Asian NICs, which are culturally, economically and socio-politically different from the four focus countries. Thus, if the focus countries are to create this institutional environment for the industrial policy process for their strategic resource industry, they need to address several issues.
Firstly, the focus countries wisely created bifurcated bureaucracies to manage their strategic resource industry. However, with the exception of Trinidad and Tobago, their governments failed to endow these institutions with the requisite resources that allowed them to operate efficiently. Governments in developing countries, especially small ones, often lack the fiscal resources required to implement broad-based public sector reforms, as recommended by the multinational lending institutions. However, these fiscally constrained governments should not be greatly challenged to provide selected bifurcated bureaucracies within their public sector with the requisite resources (human, infrastructural and financial) that will allow them to operate efficiently. This certainly is applicable to the case of Jamaica, Suriname and Guyana.

Secondly, the industrial policy process needs to be supported by political will. Developing country governments, as the case of Guyana highlights, which have experienced frequent changes in policies for their resource sector, specifically the movement away from investor-friendly policies in the pre-independence era to nationalisation in the immediate post-independence era, to the return to investor-friendly policies in the 1980s and 1990s, seem to lack the political will to formulate and implement industrial policies that could result in the sustained development of their resource sector. Strictly following the tenets of their recently adopted neo-liberal policy stance, these governments often relegate the industrial policy process to their resident MNEs. Unfortunately, this posture does not result in resource-driven, FDI-facilitated development.

Thirdly, in the twenty-first century, the industrial policy process needs to be accountable and transparent to the general public. The institutional framework of embedded autonomy was created by Japan and the South East Asian NICs under specific socio-economic and political conditions. During the late 1950s and 1960s, several of these countries were economically improvised, lacked dynamic civil society organisations and were governed by authoritarian leaders. However, in the twenty-first century, the environment for industrial policy making and implementation has changed considerably for governments, institutions and firms. These entities are increasingly being called to be accountable to their stakeholders. Hence, developing country governments now need to ensure that the industrial policy apparatus is accountable to the general public. Indeed, as the case of Trinidad and Tobago’s venture into aluminium smelting vividly illustrates, issues of embedded autonomy as well as accountability and transparency are currently considered to be critical to effective industrial policy formulation and implementation.

A critical component of an institutional framework characterised by embedded autonomy is the presence of an entrepreneurial and capable private sector. Developing countries, which have undergone European colonisation and implemented a strategy of nationalisation of the productive sectors in their immediate post-independence era, often suffer from a
paucity of internationally competitive locally owned firms. Moreover, the highly profitable, relatively large locally owned firms in these economies are often not involved in the resource sector. Instead, they are engaged in less risky ventures such as retailing and distribution. The locally owned firms that are involved in the resource sector are often small and micro enterprises operating on the periphery of the private sector. Thus, governments in these resource-rich developing countries are challenged in their attempts to include the locally owned private sector in resource-driven, FDI-facilitated development. These governments need to develop a comprehensive programme that seeks to foster competitive locally owned firms which are capable of participating in resource-driven, FDI-facilitated development. The elements of this programme would include the provision of World Trade Organisation (WTO)-compatible investment incentives to these firms, the implementation of policies that encourage locally owned firms to engage in productive activities as well as engaging the services of entities like the International Finance Corporation, which has successfully implemented linkage programmes in the mining sector of developing countries.

Finally, Japan and the South East Asian NICs implemented several innovative and culturally appropriate mechanisms to facilitate private/public sector collaboration. Developing countries are currently being encouraged to create such mechanisms. However, as this study shows, they are likely to encounter several challenges when establishing institutions for private/public sector dialogue. The most critical challenge is preventing these institutions from being captured by segments of the private sector, which do not totally represent the interests of the private sector as a whole. This issue is especially critical in plural societies like those of Guyana, Suriname and Trinidad and Tobago, where the private sector has always been dominated by specific ethnic groups to the disquiet of the others. Hence, these governments need to devise socio-cultural mechanisms for private/public sector dialogue, which attempt to include the dominant as well as the peripheral groups of the private sector.
1
The Importance of Institutional Efficiency to Resource-Driven, FDI-Facilitated Development

Introduction

The last three decades have witnessed a resurgence of FDI into the primary sector (fuel, ores and minerals) of some resource-rich developing countries. This surge in resource-seeking FDI has been triggered by privatisation schemes implemented in the context of structural adjustment programmes; favourable price movements in some commodities, for example, oil; growing demand from rapidly industrialising countries such as China and India and technological developments (UNCTAD 2005). The statistics are illuminating; for example, during the period 1989–1991, FDI inflows into the primary sector of developing countries totalled US$602 million. However, a decade later, these inflows increased by more than 300 per cent; during the years 2001–2003, FDI inflows into the primary sector of developing countries soared to US$1,855 million, which was a little more than 75 per cent of the value of FDI entering into the primary sector globally (UNCTAD 2007).

It is noteworthy that these FDI inflows have been accompanied by high commodity prices. After decades of low prices, the phenomenal growth of emerging market economies has fuelled price increases (see Figure 1.1). Global prices in non-agricultural commodities began increasing especially after 2002. This increase in non-agricultural commodity prices was briefly interrupted by the financial crisis of 2008 while the pre-2008 upturn, the 2008 to 2009 downturn and the post-2011 upturn were compounded by the actions of speculative investors (Kaplinsky 2011). Interestingly enough, these price increases are likely to persist. The economic ascendancy of the emerging market economies, notably China and India, along with the resource-intensive stages of their current development could result in a long-running acceleration of commodity–demand growth that would translate into high commodity prices (UNCTAD 2007; Collier 2011).

Not surprisingly, the resource-rich developing countries are becoming increasingly dependent on these renewed FDI inflows. As Figure 1.2 illustrates, over the period 1995–2010, the primary sector played a critical
role in the economies of some developing countries: in notable cases such as Venezuela, Nigeria, Jamaica, and Trinidad and Tobago, mineral and fuel exports contributed more than 50 per cent of the total merchandise exports.

The 1990s have also seen a dramatic change in the development strategies pursued by many developing countries. Encouraged by the multilateral lending agencies, policy makers in most developing countries, including resource-rich ones, have abandoned dirigiste policies. The government’s role in most resource-rich countries is currently relegated to policy making and regulation. It is the private sector which is now bestowed with the task of economic transformation. Given the dearth of local entrepreneurs in many of these economies, it is the foreign firm, the MNE, which is currently operating in the non-fuel resource sector. Indeed, governments in many resource-rich developing countries are actively implementing investment promotion policies to attract these investors (for example, Wälde 1991). Thus, the engine of growth in many resource-rich developing countries is currently being manned by the MNE. Hence, it could be argued that the sustained economic development of resource-rich developing countries now partially rests on the activities of the resource-seeking MNE. This thus begs

Figure 1.1 Non-agricultural commodity annual price indices, 1980–2011
The question as to the role that the resource-seeking MNE could and should play in the economic development of these countries.

The resource-seeking multinational enterprise and economic development in resource-rich developing countries

The shifting focus from fiscal benefits to positive externalities

The resource-seeking MNE emerged in the late nineteenth and early twentieth century. By the 1960s, these MNEs, which often used and abused power, dominated the international resource industry (for example, Barnet and Müller 1974). During this period, the activities of the MNEs stimulated the interests of many researchers, who argued that these firms had the power, the resources and the global reach to hinder the territorial-based objectives of national governments in both developed and developing countries (Barnet and Müller 1974).

Hence, not surprisingly, much of the early literature that examined the relationship between the resource-seeking MNEs and their host developing countries focused on issues such as the distribution of power, costs and
benefits between the two parties (Penrose 1968; Girvan 1970, 1971a, 1971b; Mikesell 1971; Vernon 1971; McKern 1976; Radetzki 1977). This relationship was oftentimes perceived as being exploitative with several writers positing that the long history of the resource-seeking MNE’s operations in these economies had only resulted in their persistent underdevelopment (see, for example, Girvan 1970; Levitt and Best 1975). These academic concerns were reflected in the nature of the concession agreements that were concluded between the MNE and the resource-rich developing economies during the pre-1980 period. Most of these concession agreements tended to concentrate primarily on maximising the fiscal benefits from the MNE’s activities in the economy. Dissatisfaction with these concession agreements reached a peak in the 1960s and early 1970s, culminating in nationalisations and even expropriations (McKern 1993). While there has been a recent shift away from concession agreements that focus primarily on fiscal benefits to ones that attempt to capture both direct benefits and positive externalities of FDI, including improved technological skills, management and know-how, induced investment in other industries and the upgrading of the general skills of the workforce (McKern 1993), little attention has been paid recently in the literature to the role that the resource-seeking MNE currently plays in enhancing the development prospects of resource-rich developing countries.

The resource-seeking multinational enterprise and stunted economic development: academic explanations

Interestingly enough, with the exception of few countries, it appears that the characteristics of production in the resource sector of developing countries have generally remained unchanged for the past century. Many resource-rich developing countries are still engaged in low-technology activities such as resource extraction with very limited processing of the extracted minerals being conducted locally. Research conducted in the early 1970s attempted to advance explanations for this manner of production organisation. One such study is the seminal work of Vernon (1971), which claims that factors such as history, the scale of investment required, the complexity of technology and the importance of downstream markets played an important role in determining the production structures adopted by MNEs in the petroleum and hard minerals (copper and aluminium) industries in the early 1970s.

Another study adopted the innovative value chain approach to examine the factors determining the extent and form of the MNE’s involvement in the non-fuel primary industries of developing countries (Girvan 1987). This study identified the industry’s production and processing technology and its market characteristics as influencing the barriers to entry, investment opportunities and rates of return at different stages of activity in these industries. Girvan (1987) further posited that the economic and political environment
Index

Page numbers in **bold** refer to figures; page numbers in *italic* refer to tables.

absorptive capacity 37, 214n1
accountability 5, 113, 150–2, 160–1, 167, 192, 226n4
advanced technological complexity 37, 46, 50–1, 56
Africa, aluminium smelting 49, 49
agricultural policy 174–5
Algeria 97
Ali, C. 16
Altenburg, T. 214n6
alumina production, world 202–5
alumina refining 36, 44–5, 45
and bauxite mining 45–6
capabilities 46, 47, 68, 184
market shares 45–6
support activities 46, 48
upgrading 64–5, 68
aluminium commodity market 59, 216n8
Aluminium Company of America (Alcoa) 33, 39–41, 46, 59, 76, 82, 126, 133, 134, 140–1, 145, 153, 154, 215n4, 220n9, 222n1, 222n2, 226n8, 226n9
Aluminium Company of Canada (Alcan) 33, 40, 76, 101, 104, 118, 121–2, 215n4, 230n4
aluminium consumption 58, 210–11
aluminium fabrication 56, 57, 58–9
aluminium industry 46, 58, 215n5
aluminium industry, Trinidad and Tobago 23, 33, 152–68
accountability 160–1
Alutrint project 154–5, 162–4, 165, 166, 167, 183, 226n10, 227n11, 227n12
‘anti-smelter’ campaign 226n10
bifurcated bureaucracy 155, 190, 192
capability building 163–6, 165, 182–3
downstream industries 162–3, 181
evolution of 153–5
FDI-facilitated development 160–1, 166–8
industrial upgrading 161–6, 165, 168
institutional framework 155–7, 156, 180
local supplier firms 161–2, 167, 182
national smelter project 153–4
policy making framework 155–60
research & development 164–6, 168, 183
training programmes 163–4, 165
transparency 160–1
aluminium production, world 206–9
aluminium smelting 44, 65
Asian dominance 48–9, 49
capabilities 50–1, 52–5, 56, 69, 70–1, 184
casting 51, 56
economies of scale 48
energy costs 48, 50
Jamaica 92–3
locational patterns 48–50, 49
power generation facilities 50–1
process 39, 48
producer consolidation 50
R&D 51
reduction process 51
regional smelter 93
stages 50–1, 52–5, 56
support activities 56
upgrading 70–1
aluminium value chain 35–60
alumina refining 44–8, 45, 47, 64–5, 68, 69
aluminium fabrication 56–9, 57
aluminium smelting 44, 48–56, 49, 52–5, 65, 69, 70–1
analytical framework 35–6
bauxite mining 38–44, 38, 39, 42–3, 64, 66–7
economies of scale 48
entry costs 194
firm-level capabilities 37
aluminium value chain – continued
 global 36–7, 37
 Jamaica’s position 99
 movement along 64, 114–16, 117, 118–22, 120
 stages 36, 37
 technological monopoly 39–40
 upgrading within 60, 64–73, 65, 66–8, 70–1, 180–4, 185–6, 187
 upstream 36
 value added 219n2
Alpart 80
Alusuisse 40
Alutech Limited 154, 163
Alunint project 154–5, 162–4, 165, 166, 167, 183, 226n10, 227n11, 227n12
Amery, Leo 175
Amsden, A. 23
Andean Pact, 1974, Decision 24 2
Anton de Kom University of Suriname
 Faculty of Technology Sciences 144–5
 Mining Department of the Faculty of Technological Sciences 142, 143
Aroaima Mining Company (AMC) 106
Australia 1, 3, 213n3
 aluminium smelting 49
 bauxite industry 75, 76
 bauxite production 38
Bahamas, the 24
Bahrain 49
Balassa, B. 214n6
Baldwin, R. E. 12–13
Barbados 25
Barclay, L. A. 14, 229n8, 229–30n2
Bardouille, R. K. 95
bargaining power 2
basic technological complexity 37, 46
bauxite 35
 reserves 38
Bauxite and Alumina Industries (Encouragement Act) 1950, Jamaica 92
Bauxite and Alumina Trading Company of Jamaica (BATCO) 82, 93, 96–7, 183–4, 219n20, 229–30n2
Bauxite Community Councils (BCCs), Guyana 110–11
Bauxite Corporation of Guyana Incorporated 106, 220n10
bauxite industry
 extractive capacity 40
 future 198
 linkage creation 13
 market shares 41, 45–6
 regional approach 193
 and resource-seeking FDI 72
 strategic importance 33
Bauxite Industry Development Corporation (BIDCO), Guyana 111, 171, 190
bauxite industry, Guyana 23, 28, 33, 101–24, 124, 153
Bauxite Community Councils (BCCs) 110–11
bifurcated bureaucracy 110–11, 171–2, 190
capability building 118–22, 120, 182
cooperative socialism 109
decline 104–7, 105, 181
downstream industries 116, 118
embedded autonomy 114
evolution of 101, 102–3, 104–7, 105
exports 184
FDI-facilitated development 114, 123–4
Guyanaisation 116
importance 104
independence era 109
industrial upgrading 114–24, 117, 120, 181
institutional development 118–19
institutional efficiency 109–12, 110, 114, 123–4
institutional framework 180
local supplier firms 115–16, 117
nationalisation era 110–11, 115
nationalisations 104, 110
policy fluctuations 101
political interference 111
post-privatisation period 109, 112, 118, 123
pre-nationalisation era 109–10
privatisation 106–7, 111–12, 118
research & development 121–2, 183
technological capabilities 181
training programmes 119–21, 120
Index 253

bauxite industry, Jamaica 13, 23, 28, 33, 75–100, 153
alumina production 92
aluminium smelting 92–3
bauxite production levy 76, 83, 95, 217n3
bifurcated bureaucracy 99, 190
capability building 93, 184
counter-purchase agreement 219n18
crisis 99–100
decline 75–6
downstream industries 92–3
embedded autonomy 85–9, 99
evolution of 75–6, 77–9, 80
exports 96–8, 183–4
FDI-facilitated development 88
firm ownership changes 76, 77–9
government agencies and 82
human resource development 93–5, 98
importance 75, 98
industrial policy 85–7
industrial upgrading 80, 89, 90, 91–9
institutional efficiency 83, 84, 85
institutional framework 180
investment 76, 92
local supplier firms 89, 90, 91–2, 98
management responsibility 81–2, 83
memorandum of understanding (MOU) 88
MNE domination 98
policy coordination 82
production 39, 76
tax incentives 76, 80
technological capabilities 181
bauxite industry, Suriname 23, 30, 33, 116, 125–47, 146
bifurcated bureaucracy 130, 131, 132–3, 145–6, 190
capability building 141–5, 182–3
decline 126–9, 127, 145, 181
downstream industries 140–1
evolution of 125–9, 127, 128, 222n1, 222n2, 222n4
exports 184
FDI-facilitated development 125, 135, 146–7
Importance 126, 128, 140
industrial upgrading 135–7, 138–9, 140–6, 181
instituional framework 129–30, 146–7, 180
local supplier firms 135–7, 138–9, 140, 146, 182, 225n22
Mining Bureau 130
MNE domination 125–9, 133–6, 140–1, 143–6
policy making framework 129–30, 131, 132–5
R&D 144–5
training programmes 136, 141–4
Bauxite Institute of Suriname (BIS) 170, 223n12, 224n13, 224n14
compensation package 132–3
creation 132
embedded autonomy 133–5
funding 132, 146, 171
infrastructural challenges 133
mandate 132
and policy making 132–3
staffing 132, 146, 171
bauxite mining 36, 38
and alumina refining 45–6
Asian dominance 38–9
capabilities 41, 42–3, 44, 65, 66–7
Caribbean decline 38–9
MNE decline 39–41
production 38
stages 41, 44
upgrading 64, 66–7
bauxite production
Jamaica 39, 76
world 200–1
BCG 118
Bechtel Group Incorporated 48
Belize 24
Bell, M. 216n1
beneficiation policies 3
Benham, F. 176
Berbice Mining Enterprise (BERMINE) 106
BHP Billiton 41, 122, 126, 127, 144–5, 223n5
BIDCO American 171, 184
bifurcated bureaucracy 5, 15, 16, 72
aluminium industry, Trinidad and Tobago 155, 157, 192
bauxite industry, Guyana 110–11, 171–2
bauxite industry, Jamaica 81–2, 83, 99
INDEX

bifurcated bureaucracy – continued
 bauxite industry, Suriname 130, 131, 132–3, 145–6
efficiency 169–72, 196
and embedded autonomy 149
Guyana 170
human resources 191
and industrial policy 18–19, 167
inefficiency 180
Jamaica 170–1
leadership 191–2
political legitimacy 191, 196
potential for 190–2
Suriname 170, 171
Trinidad and Tobago 170, 172, 180
Black Power Revolution 164, 196, 227n18, 228n25
Blomström, M. 12
Bosai Mineral Group 106, 118
Bosai Minerals (Guyana) Incorporated 106
Botswana 17
Brazil 3, 38, 45, 51, 78, 96
Brewster, H. 153
Brokopondo Agreement, the 126, 134, 140–1, 224n20
Brown, D. 191, 197
Buddingh, H. 222n1, 224n19, 225n21
bureaucratic efficiency 17–18
Cambior Incorporation 106
Canada 1, 3, 12, 213n3
capabilities 36–7
capability building 182–4, 187
aluminium industry, Trinidad and Tobago 163–6, 165
bauxite industry, Guyana 118–22, 120, 145
bauxite industry, Jamaica 93
bauxite industry, Suriname 141–5
capital, portfolio 11
Capital Development Fund, Jamaica 83
captive value chains 63, 216n4
Caribbean, the 24
Caribbean Association of Industry and Commerce (CAIC) 230n3
Caribbean Community (CARICOM) 3, 23–6, 25, 26
Caribbean Free Trade Association (CARIFTA) 24, 25, 176, 230n3
Caribbean Industrial Research Institute (CARIRI) 165, 168, 183
Caribbean Methanol Company 230n5
CCC Group Incorporated 136, 137, 140, 225n23
chaebols 173–4
chain upgrading 62
Chang, H. J. 14–16, 19, 214n10
Cheng, T. J. 18
Chile 17
China 2, 7, 58, 59, 96
alumina refining 44–5
aluminium consumption 58
aluminium smelting 49, 51
bauxite industry 38, 75
China National Machinery and Equipment Import and Export Corporation (CMEC) 162
Chinalco 41, 46, 50, 59
civil service
career structure 18, 129–30
Guyana 107–8
Jamaica 80–1, 217n5
recruitment 17–18, 129
Suriname 129–30, 223n8, 223n9, 223n12
civil society organisations 5, 153–4, 160, 166–7, 226n7
CL Financial 230n5
Clarendon Alumina Production (CAP) 82, 83, 96, 97
colonial powers 1
colonialism 86, 173
commodity prices 2, 3, 7, 8
competition, local 6
concession agreements 10
Constellium 59
consumption linkages 12
Coordinating Task Force (CTF), Trinidad and Tobago 155
Copper Corporation of Chile 2
corporate social responsibility (CSR) 151, 152
C. V. G. Ferrominera Orinoco 2
Davis, C. E. 83, 93, 218n12
de Beers 1
de Ferranti, D. 11, 213n3
debt
Guyana 28, 105–6, 108
Jamaica 27, 217n4
Suriname 30
Trinidad and Tobago 33
decolonization 1
deliberation councils 17
demanding technological complexity 37
Demerara Bauxite Company (DEMBA) 104, 115, 119–22, 183
Democratic Republic of Congo 3
dependent underdevelopment 125, 145
Development Council and the Partnership for Transformation, Jamaica 179
development space, shrinking 19–20
development strategies 8–9
dirigiste policies, abandonment of 8
disciplined support 214n7
Dominican Republic 96
Dubai 51, 59
DUBAL 51, 56, 59, 215n7
due diligence 44
Dunning, J. H. 15, 72
dynamic technological capabilities 65, 69, 72, 145, 184, 187
economic development
and institutional quality 15
and linkage creation 11–13
and resource-seeking multinational enterprises 9–11
stunted 10–11
economic emancipation 1–2
economic growth 126, 169–70
economic performance, Jamaica 76
economic success, and bureaucratic efficiency 17–18
economies of scale 48
election cycles, impact of 190–1
embedded autonomy 4–6, 61, 177–80
and accountability 150–2
bauxite industry, Guyana 114
bauxite industry, Jamaica 85–9, 99
Bauxite Institute of Suriname (BIS) 133–5
and bifurcated bureaucracies 149
and bureaucratic efficiency 17–18
colonial period 178–9
definition 15, 149
Guyana 112–14, 179–80
and industrial policy 15–17, 167
Jamaica 179
Jamaica Bauxite Institute (JBI) 87–8
Japan 177–8, 189
mechanisms 179
policy making framework 157–9
potential for 189–98
public/private sector dialogue 158, 195–8
South Korea 178
and state autonomy 16
Suriname 179, 180
Taiwan 178
and transparency 152
Trinidad and Tobago 157–9, 167, 179
and upgrading 64, 72
emerging market economies
growth of 7
emigration 28, 113, 130, 191
emissions control 56
Energy Chamber of Commerce, Trinidad and Tobago 197
energy corporations, state-owned 213n2
entrepreneurial culture, private sector 192–5
entrepreneurial sector 5–6
Environmental Management Authority (EMA), Trinidad and Tobago 154
Europe 38, 48, 49
Evans, P. 3, 16, 18, 20
Export-Import Bank of China 162
export-processing zones (EPZs) 62
exports
bauxite industry, Guyana 184
bauxite industry, Jamaica 96–8, 183–4
bauxite industry, Suriname 184
dependence on 8, 9
developing 183–4
fuel and mining 8, 9
Trinidad and Tobago 30
External Trade Bureau, Guyana 221n16
Farrell, T. M. A. 65, 69, 159, 172, 215n2, 229n8
FDI inflows 2
dependence on 7–8, 9
increases in 19
primary sector 7
share 214n9
FDI-facilitated development 3, 13–14, 61, 169, 198
aluminium industry, Trinidad and Tobago 160–1, 166–8
bauxite industry, Guyana 114, 123–4
bauxite industry, Jamaica 88
bauxite industry, Suriname 125, 135, 146–7
failure 176
and institutional framework 180–4, 185–6, 187
and upgrading 62–5, 66–8, 69, 70–1, 72
Fernandez-Stark, K. 62
Figueroa, M. 229n8
Finland 12, 213n3
firm-level capabilities 37
First Bauxite Corporation 106–7, 122, 221n11
fiscal linkages 12
Fluor Corporation 48
foreign domination 2
Fowler, M. 151
France 58
French Guiana 24
functional policies 14
functional upgrading 62
Gap, The 63
Garen, J. 56
Gereffi, G. 11, 35, 36, 62, 63, 216n3
Germany 58
Ghana 96
ghost workers 130
Girvan, N. 10–11, 13, 36, 115, 116, 136, 140–1, 145, 194–5, 217n2, 219n2, 221n14, 224n20, 229–30n2
Glencore 97, 219n15
Global Advanced Manufacturing Institute (GAMI) 215n7
global business revolution, the 19–20, 214n10
globalisation 11, 36
Golub, S. 11
governance 16, 63, 150–1
government role 8
government support 92
governments, fiscal constraints 5
Greece 96
Guinea 38, 75, 76, 96
Guyana 24, 28, 29
alumina plant 116, 118
bifurcated bureaucracy 170
bureaucratic evolution 107–9
civil service 107–8
cooperative socialism 104–5, 108, 109, 118, 176, 183, 184, 220n4
debt 28, 105–6, 108
economic performance 28, 29
embedded autonomy 112–14, 179–80
emigration 28
ethnic groups 221n12
External Trade Bureau 221n16
fiscal constraints 5
GDP 104–6
Georgetown Chamber of Commerce 113
independence 101
industrial policy 112–13
industrial upgrading 64
Ministry of Energy and Mines 109–11
National Development Strategy 2001–2010 221n17
nationalisations 108, 220n5
plantation system 112–13
political strongmen 192
political will 5
private sector 113, 176, 177
private/public sector collaboration 6
public sector reform programmes 108–9
see also bauxite industry, Guyana
Guyana Alumina Incorporated 118
Guyana Geology and Mines Commission (GGMC) 112, 114, 122
Guyana Mining Enterprise (GUYMINE) 104–6, 110–11, 122, 171, 183, 190
Guyana National Engineering Company (GNEC) 115
Guyanaisation 116
GUYBULK Shipping 111, 171
GUYCONSTRUCT 110–11, 115
Haiti 24, 25, 28, 96
Harbridge House International 119
Hausmann, R. 225n2
heavily indebted poor countries (HIPC) 28
Henke, H. 86
Higman, B. A. 157–8
Hirschman, A. O. 12
Hobday, M. 14
horizontal linkages 12
Human Employment and Resource Training Trust/National Training Agency (HEART/NTA), Jamaica 93, 94, 182
human resource development 93–5, 98, 141–4; see also training programmes
Humphrey, J. 62, 63
India 7, 96
Indonesia 3, 75
industrial development 2
industrial organisation, international system 1
industrial policy 3
accountability 5
and bifurcated bureaucracies 18–19, 167
bureaucratic challenges to 18–20
definition 214n5
and embedded autonomy 15–17, 167
Guyana 112–13
institutional framework 15, 180
and political will 5
regulation 19–20
representative association
efficiency 197
transparency 5
Trinidad and Tobago 167
and upgrading 63–4
industrial upgrading see upgrading
industrialisation 1, 175–6, 190
inflation 27, 30, 33
Innis, H. 12
institutional framework 15, 16, 221n14
accountability 152
aluminium industry, Trinidad and Tobago 180
bauxite industry, Guyana 109–12, 110, 118–19, 123–4, 180
bauxite industry, Jamaica 83, 84, 85, 180
bauxite industry, Suriname 141–7, 180
and FDI-facilitated development 180–4, 185–6, 187
fiscal constraints 5
industrial policy 180
issues 4–6
Jamaica 80–1
Japan 149
South East Asian NICs 149–50
interest rates 137
intermediate technological complexity 37, 46, 56, 59
International Business literature 13–15
international certification, local supplier firms 137
International Development Association (IDA) 220n8
International Finance Corporation (IFC), linkage programmes 193–4
International Monetary Fund (IMF) 217n4
intervention policies 14, 15
Iran 49
Iraq 97
Italy 58
JALUMEX 93
Jamaica 26–8, 27
aluminium smelting 92–3
Bauxite and Alumina Industries (Encouragement Act) 1950 92
bauxite production 39, 76
bauxite production levy 76, 83, 95, 217n3
bifurcated bureaucracy 170–1
capability building 93
Capital Development Fund 83, 84
civil service 80–1, 217n5
colonial heritage 80
debt 27, 217n4
democratic socialism 76, 217n1
economic performance 27–8, 27, 76
elite dominated political systems 86
embedded autonomy 149, 179
energy resources 93
exports 8, 9
fiscal constraints 5
fiscal crisis 81, 99, 218n6
fiscal system 76
GDP 98
government agencies 82
Human Employment and Resource Training Trust/National Training Agency (HEART/NTA) 182
industrial policy 85–7
Jamaica – continued
industrial upgrading 64
inflation 27
institutional capability 80–1
linkage creation 13
market-oriented reforms 28
memorandum of understanding (MOU) 88
Ministry of Mining and Energy 82
National Industrial Policy process 87, 218n9
National Planning Summit (NPS) 87
National Planning Summit Programme Management Office 87
national system of innovation or learning (NSIL) 92
plantation system 86
political strongmen 192
population 73
private sector 176–7
private/public sector relationship 86–7
public sector reform 81
social partnership 197
state ownership 176
trade liberalisation 176–7
see also bauxite industry, Jamaica
Jamaica Bauxite Institute (JBI) 82, 99, 170, 190, 219n16
Analytical Services department 93, 95–6, 183
embedded autonomy 87–8
funding 83, 84, 85, 96, 170–1
and industrial policy 85–7
and industrial upgrading 89
profitability 96
staffing 85, 170–1
Jamaica Bauxite Mining Company Ltd (JBM) 82
Jamaica Promotions Corporation (JAMPRO) 89
Jamalco 80, 91, 92
Japan 4, 6, 23, 175, 228n1
aluminium consumption 58
bifurcated bureaucracy 18, 169–70
embedded autonomy 17, 177–8, 189
government support 92
industrial policy 18, 20, 87
institutional framework 149
private sector 172–3
public/private sector dialogue 195

JAVEMEX 93
Johnson, C. 23, 177
Jones, R. W. 11, 80, 178–9
Julien, Kenneth 157, 192
Kaiser Aluminium 33, 40–1, 76, 215n4
Kaplnsky, R. 12, 35, 36
Kierzhowski, H. 11
King, M. 160
knowledge systems 37
Kokko, A. 12
Kuyama, S. 151
Lall, S. 37, 65, 69, 91, 213n4, 214n6, 215n2
Latin America 45, 49, 49
Lawrence, Vincent 192
Lewis, A. 175–6, 190, 229n8
Linden Mining Enterprise (LINDEN) 106, 118, 220n8
Linden Technical Institute 119–21, 182
linkage creation bauxite industry 13
consumption 12
and economic development 11–13
fiscal 12
horizontal 12
Jamaica 13
and MNEs 13–15, 23
production 12
programmes 193–4
literature 9–10, 13–15, 20, 169–70
LNG 93, 153, 219n13
local capability 36–7
local supplier firms 72, 182
activities 89, 90, 91
aluminium industry, Trinidad and Tobago 161–2, 167, 182
bauxite industry, Guyana 115–16, 117
bauxite industry, Jamaica 89, 90, 91–2, 98
bauxite industry, Suriname 135–7, 138–9, 140, 146, 182, 225n22
employee numbers 89, 90
entrepreneurial culture 192–5
international certification 137
market 91
policy formulation 194
and public/private sector dialogue 197
technology transfer 91
Index 259

local value capture 161–2
locally owned firms 6
London Metal Exchange (LME) 59, 216n8
Luiz, J. 225n1

macroeconomic performance 198
Malaysia 17
Malaysia Mining Corporation 2
managerial accountability 151
managerial capabilities 37
market failure 14
Marks and Spencers 63
Mendes, H. F. 225n21
Mexico 93
migration 113, 130, 191
Mills, G. E. 217n5
mineral industry, MNE share 2
mining sector 2–3
Monteith, K. 157–8
Montserrat 24
Moyne Commission Report 228n4
multinational enterprise (MNE)
accountability 151–2
emergence of 1
intervention policies 14
and linkage creation 13–15, 23
local supplier firms, Guyana 115
mineral industry share 2
research & development 95, 183
role 8–9
support activities 46, 48
training programmes 91, 94, 95, 98
and upgrading 62–3

Narula, R. 214n1
Natin, Suriname 142–3
National Alliance for Reconstruction (NAR), Trinidad and Tobago 155–6
National Competitiveness Council, Guyana 113, 179
National Council on Technical and Vocational Education and Training (NCTVET), Jamaica 94
National Development Strategy 2001–2010, Guyana 221n17
National Energy Corporation (NEC), Trinidad and Tobago 155, 156, 227n14
National Gas Corporation (NGC), Trinidad and Tobago 156–7
National Gas Export Task Force, Trinidad and Tobago 156–7
National Gas Institute of the Americas (NGIA) 165–6, 168, 183
National Industrial and Commercial Investment Limited (NICIL), Guyana 112, 114, 184
National Industrial Policy process, Jamaica 87, 218n9
National Planning Summit (NPS), Jamaica 87
National Planning Summit Programme Management Office, Jamaica 87
national system of innovation or learning (NSIL) 92, 137, 182, 194
nationalisations 2, 5–6, 10, 104, 108, 110–11, 115, 220n5
natural gas 153
Nelson, R. R. 216n1
New Public Management (NPM) 150
Nigeria 8
Nike 63
Nikolaev Alumina Refinery, Ukraine 118
Nolan, P. 19
non-governmental organisations (NGOs) 151, 226n5
de Nooijer, P. G. 142
Noranda 40, 153
Noranda Jamaica Partnership 82
Norsk Hydro 153, 166
North, D. 15
Norway, University of Science and Technology 166, 168, 183
Novelis 59
Nunes, F. E. 217n5
Omai Bauxite Company 106, 121
Omai Bauxite Mining Incorporated 118
outsourcing 11, 46, 56, 65
Pack, H. 214n6
Parris, Haslyn 192
Parsons Corporation 48
Partnership for Progress (PFP) initiatives 197, 230–1n8
Pavitt, K. 216n1
Pechiney 39–40
People's National Movement (PNM), Trinidad and Tobago 155, 156
Permanent Local Content Committee (PLCC), Trinidad and Tobago 162, 193
Philip Brothers 111
policy coordination 82
policy fatigue 190
policy makers
 embedded 16
 political will 190
policy making framework 190–1
 accountability and transparency 160–1
 aluminium industry, Trinidad and Tobago 155–60
 embedded autonomy 157–9
political accountability 150, 151
political environment 10–11
political independence 1
political legitimacy 191, 196
political strongmen 191–2
political will 3, 190
Pollack, H. R. 126, 192, 223n10
population 72–3
Porter, M. E. 35
portfolio capital 11
power 9
power generation 50–1
price distortions 2
private sector 5–6
 colonial period 174–6
 development of 174–7
 effectiveness 172–7
 entrepreneurial culture 192–5
Guyana 176, 177
Jamaica 176–7
Japan 172–3
policy formulation 194
potential of 189
Singapore 174
socio-cultural milieu 195–6
South Korea 173–4
Suriname 177, 229n11
Taiwan 174
Trinidad and Tobago 180
private sector-led development 2
private sector–public sector partnerships 134–5
private/public cooperation 6, 86–7, 158–9, 229n12
privatisation 7, 106–7, 111–12, 118
Privatisation Unit (PU), Guyana 112
Prno, J. 151–2
Probsensol mechanisms 172
process upgrading 62
processing 1
producer associations 2
product upgrading 62
production blocks 11
production linkages 12
production structure, fragmented 11
profits 1, 2–3
public/private cooperation see embedded autonomy
public/private sector dialogue 158, 195–8
quality standards 91
Ramsoedh, H. 224n16
regional aluminium smelter 93
regulation, industrial policy 19–20
relational value chains 216n4
research & development 51, 69, 95–6, 121, 144–5, 164–6, 168, 183, 187
resource nationalism 3
resource-seeking FDI 1–2
 and bauxite industry 72
 resurgence in 2–3, 7, 61
resource-seeking multinational enterprises 9–11
Reynolds, C. W. 13
Reynolds Metal Company 33, 40, 76, 101, 215n4, 220n9
Rio Tinto 1, 40
Rio Tinto Alcan 41, 46
Robertson, P. D. 217n5
Rodrik, D. 15–17, 149, 152
Royal Dutch Shell 1
safety standards 91
Saggi, K. 214n6
Schmitz, H. 62, 63
secondary process activities 72, 181
selective intervention policies 14, 214n6
Shenyang Aluminium and Magnesium Engineering Institute of the Ministry
 of Metallurgical Industry (SAMI) 215n7
shipment 46
Singapore 17, 18, 170, 174, 176, 230n6
Index

Slocombe, D. S. 151–2
Social Economic Council, Suriname 135, 179, 180
social licence to operate (SLO) 151–2
social partnership 197
South Africa 3, 17
South East Asian NICs 18, 23, 63
bifurcated bureaucracy 169–70
embedded autonomy 17, 149, 177–8, 189
government support 92
industrial policy 20
institutional framework 149–50
private sector 172–4
public/private sector dialogue 195
South Korea 17, 18, 214n8, 225n1, 225n2, 228n2
bifurcated bureaucracy 18, 170
embedded autonomy 178
industrial policy 18, 87
private sector 173–4
Southwire Corporation 153
sovereignty 2
spillover effects, welfare 14–15
Staple Trap theory 12
state autonomy 15–16
state ownership 2, 213n2
static technological capabilities 65, 69, 145
Stiglitz, J. E. 214n6
Stone, C. 86, 179, 218n11
storage 46
structural adjustment programmes 7
stunted economic development 10–11
support activities
alumina refining 46, 48
aluminium smelting 56
Sural 154
Suralco 126–8, 136–7, 140–1, 223n6
Suralco Training Institute 143–4
Suriname 24, 30
autonomy period 134
bauxite production levy 130
bifurcated bureaucracy 170, 171
civil service 129–30, 223n8, 223n9, 223n12
colonial period 133, 140, 224n15, 224n16, 224n17
constitution 129, 223n7
debt 30
dependent underdevelopment 125, 145
economic performance 30, 31, 126
education spending 141–2
embedded autonomy 179, 180
fiscal constraints 5
independence 127, 229n10
industrial development 224n19
industrial upgrading 64
inflation 30
institutional framework 129–30, 131, 132
Internal War 127, 143–4, 222n3
migration 130, 191
national system of innovation or learning (NSIL) 137, 182
political culture 223n11
political strongmen 192
population 72–3
private sector 177, 229n11
private sector–public sector partnerships 6, 134–5
public sector reform programmes 130
public sector size 129
Social Economic Council 135
state ownership 177
teacher shortage 142–3
unemployment 30
see also bauxite industry, Suriname
Suriname Business Forum 179
Suriname Planning Board 134
sustainable development 152
Sweden 12, 213n3
Taiwan 18, 170, 174, 178, 191, 195, 225n2, 228n2, 228n3
tax incentives 76, 80
technological capabilities 36–7, 65, 181
alumina refining 46, 47
aluminium fabrication 57, 59
aluminium smelting 50–1, 52–5, 56
bauxite mining 41, 42–3, 44
definition 213n4, 215n2
development of 72, 216n1
dynamic 65, 69, 72, 145, 184, 187, 216n5
measures 215n2
static 65, 69, 145
upgrading 65, 66–8, 69, 70–1, 72
Index

Technological monopoly 39–40
Technology systems 37
Technology transfer 91
Tesco 63
Thailand 17
Thomas, C. 153, 226n3
Trade, global 11
Trade liberalisation 176
Training programmes 91, 93–5, 98, 119, 136, 141–4, 163–4, 165, 187
Transparency 5, 113, 152, 160–1, 167, 192
Transport costs 11
Transportation 46
Trinidad and Tobago 5, 30, 33
Bifurcated bureaucracy 170, 172, 180
Black Power Revolution 164, 196, 227n18, 228n25
civil society organisations 160, 166–7, 226n7
Colonial government 157–8
Coordinating Task Force (CTF) 155
debt 33
economic performance 30, 32, 33
Education system 168
Embedded autonomy 157–9, 167, 179
Energy Chamber of Commerce 197
Energy resources 153
Environmental Management Authority (EMA) 154
Exports 8, 9, 30
Five year development plans 227n18
Human resource practice 172
Industrial policy 167
Industrial upgrading 64
Inflation 33
LNG 93
Local supplier firms 194–5
National Energy Corporation (NEC) 155, 156, 227n14
National Gas Corporation (NGC) 156–7
National Gas Export Task Force 156–7
Natural resources 30
Permanent Local Content Committee (PLCC) 162, 193
Point Lisas Industrial Estate 227n18, 227n20
Political strongmen 192
Private sector 180
Private sector–public sector relationship 158–9
Private/public cooperation 6, 229n12
Unemployment 33
Vision 2020 160, 161
White Paper on Natural Gas 153
World War II 175
See also aluminium industry, Trinidad and Tobago
Trinidad and Tobago Institute of Technology 164
Turner, M. 222n19
Ukraine 97
Unemployment 30, 33
United Arab Emirates 49
United Company Rusal 41, 46, 50, 59, 76, 106, 116, 217n4
United Kingdom 58, 174–5, 178–9, 229n5, 229n7
United Nations 151
United Nations Industrial Development Organisation (UNIDO) 89
United States of America 12–13, 25, 48, 49, 56, 58
University of Science and Technology, Norway 166, 168, 183
University of the West Indies (UWI) 166
University of Trinidad and Tobago (UTT) 164, 166
Upgrading
Alumina refining 64–5, 68
Aluminium industry, Trinidad and Tobago 161–6, 165, 168
Aluminium smelting 70–1
Within the aluminium value chain 64–73, 65, 66–8, 70–1, 180–4, 185–6, 187
Bauxite industry, Guyana 114–24, 117, 120, 181
Bauxite industry, Jamaica 80, 90, 91–9
Bauxite industry, Suriname 135–7, 138–9, 140–6, 181
Bauxite mining 64, 66–7
Capabilities 65, 66–8, 69, 70–1, 72
Capability building 93, 118–22, 120, 141–5, 163–6, 165
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chain</td>
<td>62</td>
</tr>
<tr>
<td>definition</td>
<td>62</td>
</tr>
<tr>
<td>and embedded autonomy</td>
<td>64, 72</td>
</tr>
<tr>
<td>exports</td>
<td>96–8</td>
</tr>
<tr>
<td>and FDI-facilitated development</td>
<td>62–5, 66–8, 69, 70–1, 72</td>
</tr>
<tr>
<td>functional</td>
<td>62</td>
</tr>
<tr>
<td>human resource development</td>
<td>93–5, 98</td>
</tr>
<tr>
<td>and industrial policy</td>
<td>63–4</td>
</tr>
<tr>
<td>MNEs and</td>
<td>62–3</td>
</tr>
<tr>
<td>process</td>
<td>62</td>
</tr>
<tr>
<td>product</td>
<td>62</td>
</tr>
<tr>
<td>research & development</td>
<td>95–6, 144–5</td>
</tr>
<tr>
<td>trajectory</td>
<td>62</td>
</tr>
<tr>
<td>typolgy</td>
<td>62</td>
</tr>
<tr>
<td>USSR</td>
<td>97</td>
</tr>
<tr>
<td>value chain</td>
<td>10–11, 72, 181</td>
</tr>
<tr>
<td>analytical framework</td>
<td>35–6</td>
</tr>
<tr>
<td>captive</td>
<td>63, 216n4</td>
</tr>
<tr>
<td>definition</td>
<td>35</td>
</tr>
<tr>
<td>global</td>
<td>19</td>
</tr>
<tr>
<td>governance</td>
<td>63</td>
</tr>
<tr>
<td>movement along</td>
<td>64</td>
</tr>
<tr>
<td>relational</td>
<td>216n4</td>
</tr>
<tr>
<td>share</td>
<td>3</td>
</tr>
<tr>
<td>and upgrading</td>
<td>62–4</td>
</tr>
<tr>
<td>value-added processing</td>
<td>activities 1</td>
</tr>
<tr>
<td>value-adding activities, cross-border</td>
<td>11</td>
</tr>
<tr>
<td>van Arkadie, B.</td>
<td>15</td>
</tr>
<tr>
<td>Venezuela</td>
<td>2, 8, 9, 93, 96, 97, 226n6</td>
</tr>
<tr>
<td>Vernon, R.</td>
<td>10</td>
</tr>
<tr>
<td>Vietnam</td>
<td>3, 38</td>
</tr>
<tr>
<td>Votorantim Metais</td>
<td>154</td>
</tr>
<tr>
<td>Wade, R. H.</td>
<td>23, 195</td>
</tr>
<tr>
<td>Wälde, T.</td>
<td>3</td>
</tr>
<tr>
<td>Washington Consensus, the</td>
<td>76, 81, 218n10</td>
</tr>
<tr>
<td>waste management</td>
<td>56</td>
</tr>
<tr>
<td>Watkins, M.</td>
<td>12</td>
</tr>
<tr>
<td>Weiss, L.</td>
<td>18, 92, 178, 214n7</td>
</tr>
<tr>
<td>welfare, spillover effects</td>
<td>14–15</td>
</tr>
<tr>
<td>West Indies Royal Commission Report, 1945</td>
<td>174–5</td>
</tr>
<tr>
<td>White Paper on Natural Gas, Trinidad and Tobago</td>
<td>153</td>
</tr>
<tr>
<td>Willems, M.</td>
<td>42</td>
</tr>
<tr>
<td>Williams, Eric</td>
<td>153, 158, 227n16, 227n17</td>
</tr>
<tr>
<td>Windalco</td>
<td>80, 82, 91</td>
</tr>
<tr>
<td>windfall revenues</td>
<td>3</td>
</tr>
<tr>
<td>Winter, S. J.</td>
<td>216n1</td>
</tr>
<tr>
<td>World Bank</td>
<td>28, 150, 213n1</td>
</tr>
<tr>
<td>world economy</td>
<td>11</td>
</tr>
<tr>
<td>World Trade Organisation (WTO)</td>
<td>6, 19–20</td>
</tr>
<tr>
<td>World War I</td>
<td>125–6, 225n24</td>
</tr>
<tr>
<td>World War II</td>
<td>175</td>
</tr>
<tr>
<td>Worldwide Governance</td>
<td>Indicators 150–1, 226n3</td>
</tr>
<tr>
<td>Wu, Y.</td>
<td>191</td>
</tr>
<tr>
<td>Zhengzhou Research Institute of Chalco</td>
<td>215n7</td>
</tr>
</tbody>
</table>